Fast and Low-Cost Genomic Foundation Models via Outlier Removal

Haozheng Luo*, Chenghao Qiu*, Maojiang Su, Zhihan Zhou, Zoe Mehta, Guo Ye, Jerry Yao-Chieh Hu, Han Liu

Northwestern University, Computer Science

https://arxiv.org/abs/2505.00598

ICML2025

Problem: Transformer-based Genomic Foundation Models (GFMs) encounters outlier-inefficient in quantization and fine-tuning.

Proposal: Fast and Low-Cost Genomic Foundation Models (termed GERM) via outlier-removal architecture and continual learning.

- Serves as an outlier-free model structure to address and mitigate outliers introduced by pretrained models and low-rank adaptation,
- Retains and improves the desirable properties of GFMs in quantization and low-rank adaptation,
- All DNABERT fine-tuning tasks finish in only 5 minutes on a single NVIDIA GeForce RTX 2080 Ti GPU.
- Achieves average performance improvements of 37.98% in finetuning and 64.34% in quantization.

Motivation: Outliers and GFMs

Outlier: In GFMs, tokens or activations that disproportionately influence the attention mechanism with:

- Tokens with little or no meaningful information receive disproportionately high attention weights.
- Recurring nucleotide patterns are overemphasized by Softmax.

GFMs: Large-scale pretrained models designed for modeling and analysing genomic sequences.

- Trained on massive genomic datasets
- Classification models: e.g., DNABERT-2, Nucleotide Transformer (NT), HyenaDNA
- Generative models: e.g., Evo, GenomeOcean
- Larger GFMs, especially generative models, require substantial computational resources for deployment and fine-tuning.

 We propose a new GFM architecture GERM by replacing the Softmax in the attention mechanism with Softmax₁ to achieve the Quantization Robustness and Fast Low-rank Adaptation.

$$Softmax_1(S) := \frac{\exp(S)}{1 + \sum_{i=1}^{L} \exp(S_i)},$$

• The original OutEffHop method requires training from scratch; we propose a trade-off variant, Germ-T, to achieve sub-optimal performance with small-step continual learning.

Experimental Studies: Outlier-Efficiency and Quantization Results

Compare GERM with the vanilla attention on DNABERT-2 in quantization setting.

Model	#Bits	Quantization Method	MCC (†)	Delta MCC (\psi)	Avg Performance Drop (\perp)	Avg. Kurtosis (\downarrow)	Max inf. norm (↓)
Official	16W/16A	-	66.11		-	39.68	53.61
-	16W/16A		59.11	7.00	-		61.64
	8W/8A	-	33.60 ± 0.41	32.51	43.81%		
	8W/8A		36.51 ± 0.02	45.37	38.63%		
DNABERT-2	6W/6A	SmoothQuant	20.74 ± 0.04	45.37	66.18%		
Ë	4W/4A		-1.03 ± 0.06	67.06	101.24%	270.90	
8	8W/8A	Outlier	25.26±0.02	40.85	57.60%	270.90	01.04
Z O	6W/6A	Outner	27.84 ± 0.28	38.27	52.71%		
_	8W/8A		49.92±0.05	16.19	15.76%		
	6W/6A	OmniQuant	48.47 ± 0.14	17.64	18.61%		
	4W/4A		2.94 ± 0.19	63.17	94.78%		
	16W/16A		59.73	6.38			10.62
	8W/8A	-	57.30±0.08	8.81	3.77%		
	8W/8A		56.65±0.15	9.46	4.82%		
	6W/6A	SmoothQuant	56.48±0.07	9.63	5.45%		
GERM	4W/4A		20.05±0.00	46.06	69.44%	21.29	
8	8W/8A	0.41	45.87±0.08	20.24	25.23%	21.29	
	6W/6A	Outlier	40.57±0.56	25.54	36.27%		
	8W/8A		55.99±0.09	10.12	5.95%		
	6W/6A	OmniQuant	55.70±0.03	10.41	6.41%		
	4W/4A		49.42±0.00	16.69	17.17%		
	16W/16A		59.30	6.81			28.49
	8W/8A	-	38.38 ± 0.15	27.73	35.27%		
	8W/8A		57.52±0.00	8.59	3.01%		
-	6W/6A	SmoothQuant	30.34 ± 0.04	35.77	48.83%		
GERM-T	4W/4A		0.22 ± 0.00	65.89	99.63%	251.40	
ä	8W/8A	Outlier	42.57±0.05	23.54	28.31%	251.40	28.49
0	6W/6A	Outlier	46.02 ± 0.06	20.06	22.34%		
	8W/8A		56.80±0.12	9.31	4.21%		
	6W/6A	OmniQuant	55.41±0.00	10.71	6.57%		
	4W/4A		3.86 ± 0.00	62.25	93.49%		

Results: Germ achieves an average performance improvement of **64.34%** in PTQ experiments. Similarly, GERM-T shows an average performance improvement of **43.04%** over the same baseline

Experimental Studies: Outlier-Efficiency and Quantization Results2

Compare GERM with the vanilla attention on NT 2.5B in quantization setting.

Model	#Bits	Quantization Method	MCC	Delta MCC	Average Performance Drop
	16W/16A		56.98	-	
	6W/6A		18.52	38.46	67.50%
	4W/4A		1.39	55.59	97.56%
	6W/6A	Outlier	50.23	6.75	11.85%
NT-2.5B-multi	4W/4A	Outher	40.74	16.24	28.50%
	6W/6A	SmoothQuant	47.23	9.75	17.11%
	4W/4A	SilloouiQuant	35.16	21.82	38.29%
	6W/6A	OmniQuant	49.55	7.43	13.04%
	4W/4A	OmniQuant	43.63	13.35	23.43%
	16W/16A		57.16	-0.18	
	6W/6A	-	45.96	11.2	19.59%
	4W/4A		42.48	14.68	25.68%
	6W/6A	0	52.24	4.92	8.61%
GERM (NT-2.5B-multi)	4W/4A	Outlier	49.00	8.16	14.28%
	6W/6A	SmoothQuant	51.95	5.21	9.11%
	4W/4A	SmoothQuant	48.15	31.09	15.76%
	6W/6A	OmniQuant	52.55	4.61	8.07%_
	4W/4A	OmmQuant	49.26	7.90	13.82%
	16W/16A		56.82	0.16	
	6W/6A		32.58	24.24	42.66%
	4W/4A		10.49	46.33	81.54%
	6W/6A	Outlier	52.14	4.68	8.24%
GERM-T (NT-2.5B-multi)	4W/4A	Outher	46.24	10.58	18.62%
	6W/6A	Smooth Owant	51.61	5.21	9.17%
	4W/4A	SmoothQuant	48.12	8.70	15.31%
	6W/6A	OiOt	52.43	4.39	7.73%
	4W/4A	OmniQuant	47.28	9.54	16.79%

Results: GERM achieves an average performance improvement of **50.83%** in PTQ experiments. Similarly, GERM-T shows an average performance improvement of **36.73%** over the same baseline.

Experimental Studies: Outlier-Efficiency and Low-rank Adaptation Results

Compare GERM with the vanilla attention on DNABERT-2 in low-rank adaptation setting.

Models	Low-Rank Adaptation Method	MCC (†)	Delta MCC different (↓)	Avg Performance Drop (\pmu)	Avg. kurtosis(↓)	Max inf. norm(\downarrow)
7	Full	59.11	7.00	-	270.90	61.41
DNA BERT-2	LoRA	50.91 ± 1.67	15.2	13.87%	-	219.20
	QLoRA	50.65 ± 0.13	15.46	14.31%	292.85	53.91
щ	LoftQ	50.76 ± 0.06	15.31	14.05%	299.18	54.18
	Full	59.73	6.38	-	21.29	10.62
GERM	LoRA	57.27 ± 0.70	8.84	4.12%	-	19.41
Œ	QLoRA	53.16 ± 0.21	12.95	10.99%	34.29	27.27
_	LoftQ	53.11 ± 0.08	13.00	$\boldsymbol{11.08\%}$	33.02	27.41
H	Full	59.30	6.81	-	251.40	28.49
-W	LoRA	55.60 ± 0.28	10.51	6.23%	-	140.86
GERM-T	QLoRA	51.05 ± 0.07	15.06	13.90%	287.95	53.92
О	LoftQ	51.20 ± 0.13	14.91	13.65%	286.16	53.35

Results: GERM achieves an average performance improvement of 37.98% in low-rank adaptation compared to DNABERT-2 model. Similarly, GERM-T shows an average performance improvement of 20.01% over the same baseline.

Experimental Studies: Outlier-Efficiency and Low-rank Adaptation Results2

Compare GERM with the vanilla attention on NT 2.5B in low-rank adaptation setting.

Model	Fine-Tuning Method	MCC	Delta MCC	Average Performance Dro	
	Full	56.98	-	-	
NT 0 5D14:	LoRA	53.50	3.48	6.11%	
NT-2.5B-multi	QLoRA	52.29	4.69	8.19%	
	LoftQ	52.89	4.09	7.17%	
	Full	57.16	-0.18	-	
CEDM OFF 2 5D	LoRA	55.98	1.18	2.06%	
GERM (NT-2.5B-multi)	QLoRA	55.52	1.64	2.87%	
	LoftQ	55.80	1.36	2.38%	
	Full	56.82	0.16	-	
CERM TONTO SP	LoRA	55.24	1.58	2.78%_	
GERM-T (NT-2.5B-multi)	QLoRA	53.32	3.50	6.16%	
	LoftQ	53.74	3.08	5.42%	

Results: GERM achieves an average performance improvement of 66.02% in low-rank adaptation. Similarly, GERM-T shows an average performance improvement of 34.56% over the same baseline.

Experimental Studies: Outlier-Efficiency on Various Continual Learning Steps

Compare GERM-T with the vanilla attention on various continual learning steps.

Method	Fine-Tuning Method	MCC (†)	Avg Performance Drop (\dagger)
DNABERT-2	Full	59.11	-
GERM	Full	59.73	-
Out20k	Full	59.21	-
GERM-T	Full	59.30	-
Out100k	Full	60.56	-
DNABERT-2	LoRA	50.91	13.87%
GERM	LoRA	56.78	4.94%
Out20k	LoRA	54.75	7.53%
GERM-T	LoRA	55.60	<u>6.24%</u>
Out100k	LoRA	56.61	6.52%
DNABERT-2	QLoRA	50.65	14.31%
GERM	QLoRA	53.16	11.00%
Out20k	QLoRA	50.61	14.52%
GERM-T	QLoRA	51.05	<u>13.91%</u>
Out100k	QLoRA	51.24	15.39%
DNABERT-2	LoftQ	50.76	14.13%
GERM	LoftQ	53.11	11.08%
Out20k	LoftQ	50.94	13.97%
GERM-T	LoftQ	51.20	13.66%
Out100k	LoftQ	50.77	16.17%

Results: Our method outperforms the vanilla approach across all test sets. Also, we observe that GERM-T exhibits the most optimal performance drop during quantization and low-rank adaptation compared to other continual learning steps.

Experimental Studies: Comparison of Performance in Resource-Constrained Environments

Compare GERM with the vanilla attention on DNABERT-2 in resource-constrained setting.

Results: Both GERM and GERM-T achieve shorter full-rank fine-tuning times per epoch compared to DNABERT-2. Additionally, the model quantization latency for both GERM and GERM-T is lower than that of DNABERT-2, while delivering superior quantization performance.

Experimental Studies: Comparison of Performance in CPU-only Environments

Compare GERM with the vanilla attention on DNABERT-2 in CPU-only environments.

Method	Fine-Tuning Method	MCC (†)	Time	(sec.)
			Train	Inference
DNABERT-2	LoRA	50.91	808.23	29.66
GERM	LoRA	<i>57.27</i>	618.68	23.10
GERM-T	LoRA	<u>55.60</u>	<u>674.40</u>	23.57
DNABERT-2	QLoRA	50.65	516.04	63.17
GERM	QLoRA	53.16	358.34	45.28
GERM-T	QLoRA	<u>51.50</u>	<u>418.13</u>	<u>46.91</u>

Results: Both GERM and GERM-T achieve shorter fine-tuning times per epoch compared to DNABERT-2, with the only exception being QLoRA when deployed, where the time is slightly longer.

Summary

- Fast and Low-Cost Genomic Foundation Models
 - Manages outliers in transformer-based GFMs.
 - Remove outlier in model pretraining and fine tuning period.
- Theoretical Enhancements
 - o Provide expressive guarantee of low-rank adaption.
- Small-Step Continual Learning
 - Leverages continual learning to address the training-from-scratch limitation in [Hu et al., 2024].
 - Achieves sub-optimal yet effective performance.
- Empirical Performance of GERM
 - o Achieves 92.14% lower average kurtosis and 82.77% lower maximum infinity norm $|\mathbf{x}|_{\infty}$, enabling robust quantization and fast low-rank adaptation.
 - Improves fine-tuning performance by 37.98% and quantization performance by 64.34% over the baseline.

Thank You!

Haozheng Luo*, Chenghao Qiu*, Maojiang Su, Zhihan Zhou, Zoe Mehta, Guo Ye, Jerry Yao-Chieh Hu, Han Liu

- hluo@u.northwestern.edu
- **▼** q1320460765@tju.edu.cn
- **™** maojiangsu2030@u.northwestern.edu
- zhihanzhou2020@u.northwestern.edu
- zoe.mehta@vhhscougars.org
- guoye2018@u.northwestern.edu
- ✓ jhu@u.northwestern.edu
- https://github.com/MAGICS-LAB/GERM