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Introduction

Problem: Transformer-based Genomic Foundation Models (GFMs)
encounters outlier-inefficient in quantization and fine-tuning.
Proposal: Fast and Low-Cost Genomic Foundation Models (termed
GERM) via outlier-removal architecture and continual learning.

e Serves as an outlier-free model structure to address and
mitigate outliers introduced by pretrained models and low-rank
adaptation,

e Retains and improves the desirable properties of GFMs in
quantization and low-rank adaptation,

e All DNABERT fine-tuning tasks finish in only 5 minutes on a
single NVIDIA GeForce RTX 2080 Ti GPU.

e Achieves average performance improvements of 37.98% in

finetuning and 64.34% in quantization.
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Motivation: Outliers and GFMs

Outlier: In GFMs, tokens or activations that disproportionately
influence the attention mechanism with:
e Tokens with little or no meaningful information receive
disproportionately high attention weights.
e Recurring nucleotide patterns are overemphasized by Softmax.

GFMs: Large-scale pretrained models designed for modeling and
analysing genomic sequences.
e Trained on massive genomic datasets
e Classification models: e.g., DNABERT-2, Nucleotide
Transformer (NT), HyenaDNA
e Generative models: e.g., Evo, GenomeOcean
o Larger GFMs, especially generative models, require substantial

computational resources for deployment and fine-tuning.
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GERM

e We propose a new GFM architecture GERM by replacing the
Softmax in the attention mechanism with Softmax; to achieve
the Quantization Robustness and Fast Low-rank Adaptation.

exp(S)
1+ Z,-Lzl exp(S;)

e The original OutEffHop method requires training from scratch;

Softmax;(S) =

)

we propose a trade-off variant, GERM-T , to achieve
sub-optimal performance with small-step continual learning.
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Experimental Studies: Outlier-Efficiency and Quantization Results

Compare GERM with the vanilla attention on DNABERT-2 in quantization setting.
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Experimental Studies: Outlier-Efficiency and Quantization Results2

Compare GERM with the vanilla attention on NT 2.5B in quantization setting.

Model #Bits Quantization Method MCC Delta MCC  Average Performance Drop
16W/16A 56.98 - -
6W/6A 18.52 38.46 67.50%
4WHA 1.39 55.59 97.56%
6W/6A Outlier 50.23 6.75 11.85%
NT-2.5B-multi 4WIAA 40.74 16.24 28.50%
6W/6A SmoothQuant 4723 9.75 17.11%
AWHA 35.16 21.82 38.29%
6W/6A OmniQuant 49.55 743 13.04%
4W/AA 43.63 13.35 23.43%
16W/16A 57.16 -0.18 -
6W/6A 45.96 1.2 19.59%
AWHA 4248 14.68 25.68%
6W/6A Outlier 5224 4.92 8.61%
GERM (NT-2.5B-multi) 4WI4A 49.00 8.16 14.28%
6W/6A SmoothQuant 51.95 5.21 9.11%
4WHA 48.15 31.09 15.76%
6W/6A OmniQuant 5255 461 8.07%
4W/HA 49.26 7.90 13.82%
16W/16A 56.82 0.16 B
6W/6A 32.58 2424 42.66%
4WHA 10.49 46.33 81.54%
6W/6A Outlier 52.14 4.68 8.24%
GERM-T (NT-2.5B-multi) 4W/4A 46.24 10.58 18.62%
6W/6A SmoothQuant 51.61 5.21 9.17%
4WHA 48.12 8.70 1531%
6W/6A OmniQuant 5243 439 7.73%
4W/AA 47.28 9.54 16.79%

Results: GERM
achieves an average
performance
improvement of
50.83% in PTQ
experiments.
Similarly, GERM-T
shows an average
performance
improvement of
36.73% over the
same baseline.
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Experimental Studies: Outlier-Efficiency and Low-rank Adaptation Results

Compare GERM with the vanilla attention on DNABERT-2 in low-rank adaptation setting.

Low-Rank Delta MCC  Avg Performance . Max inf.
Models Adaptation Method MCC (1) different ({) Drop ({) Avg. kurtosis(}) norm({)
S Full 59.11 7.00 - 270.90 61.41
=l LoRA 50.91+1.67 152 13.87% - 219.20
a g QLoRA 50.65+0.13 15.46 14.31% 292.85 53.91
LoftQ 50.76+0.06 15.31 14.05% 299.18 54.18
Full 59.73 6.38 - 21.29 10.62
E LoRA 57.27+0.70 8.84 4.12% - 19.41
é’ QLoRA 53.16+0.21 12.95 10.99 % 34.29 27.27
LoftQ 53.11+0.08 13.00 11.08% 33.02 27.41
~ Full 59.30 6.81 - 251.40 28.49
= LoRA 55.60+0.28 10.51 6.23% - 140.86
& QLoRA 51.05+0.07 15.06 13.90% 287.95 53.92
© LoftQ 51.20+0.13 14.91 13.65% 286.16 53.35

Results: GERM achieves an average performance improvement of
37.98% in low-rank adaptation compared to DNABERT-2 model.
Similarly, GERM-T shows an average performance improvement of

20.01% over the same baseline.
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Experimental Studies: Outlier-Efficiency and Low-rank Adaptation Results2

Compare GERM with the vanilla attention on NT 2.5B in low-rank adaptation setting.

Fine-Tuning
Model Method MCC Delta MCC Average Performance Drop
Full 56.98 ; -
. LoRA 5350 348 6.11%
NT-2.5B-mult QLoRA 5229 469 8.19%
LoftQ 5289 4.09 7.17%
Full 5716  -0.18 ;
. LoRA 5598 118 2.06%
GERM (NT-2.5B-multh) ) oA 5552 164 2.87%
LoftQ 5580 136 2.38%
Full 5682 0.16 ;
. LoRA 5524 1.58 2.78%
GERM-T (NT-2.5B-mult)) ) 0o 5332 350 6.16%
LoftQ 5374 3.08 5.42%

Results: GERM achieves an average performance improvement of
66.02% in low-rank adaptation. Similarly, GERM-T shows an average

performance improvement of 34.56% over the same baseline. 8/13



Experimental Studies: Outlier-Efficiency on Various Continual Learning Steps

Compare GERM-T with the vanilla attention on various continual learning steps.

Fine-Tuning

Avg Performance

Method Method MCC (1) Drop ()
DNABERT-2 Full 59.11 -
GERM Full 59.73 -
Out20k Full 59.21 -
GERM-T Full 59.30 -
Out100k Full 60.56 -
DNABERT-2 LoRA 50.91 13.87%
GERM LoRA 56.78 4.94%
Out20k LoRA 54.75 7.53%
GERM-T LoRA 55.60 6.24%
Out100k LoRA 56.61 6.52%
DNABERT-2 QLoRA 50.65 14.31%
GERM QLoRA 53.16 11.00%
Out20k QLoRA 50.61 14.52%
GERM-T QLoRA 51.05 13.91%
Out100k QLoRA 51.24 15.39%
DNABERT-2 LoftQ 50.76 14.13%
GERM LoftQ 53.11 11.08%
Out20k LoftQ 50.94 13.97%
GERM-T LoftQ 51.20 13.66%
Out100k LoftQ 50.77 16.17%

Results: Our method
outperforms the
vanilla approach
across all test sets.
Also, we observe that
GERM-T exhibits
the most optimal
performance drop
during quantization
and low-rank
adaptation compared
to other continual
learning steps.
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Experimental Studies: Comparison of Performance in Resource-Constrained Environments

Compare GERM with the vanilla attention on DNABERT-2 in resource-constrained setting.
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Results: Both GERM and GERM-T achieve shorter full-rank fine-tuning
times per epoch compared to DNABERT-2. Additionally, the model
quantization latency for both GERM and GERM-T is lower than that of

DNABERT-2, while delivering superior quantization performance.
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Experimental Studies: Comparison of Performance in CPU-only Environments

Compare GERM with the vanilla attention on DNABERT-2 in CPU-only environments.

Fine-Tuning

Method Method MCC (1) Time (sec.)
Train  Inference

DNABERT-2 LoRA 50.91 808.23 29.66
GERM LoRA 57.27 618.68 23.10
GERM-T LoRA 55.60 674.40 23.57
DNABERT-2 QLoRA 50.65 516.04 63.17
GERM QLoRA 53.16 358.34 45.28
GERM-T QLoRA 51.50 418.13 46.91

Results: Both GERM and GERM-T achieve shorter fine-tuning times
per epoch compared to DNABERT-2, with the only exception being
QLoRA when deployed, where the time is slightly longer.
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e Fast and Low-Cost Genomic Foundation Models
o Manages outliers in transformer-based GFMs.
o Remove outlier in model pretraining and fine tuning period.
e Theoretical Enhancements
o Provide expressive guarantee of low-rank adaption.
e Small-Step Continual Learning
o Leverages continual learning to address the
training-from-scratch limitation in [Hu et al., 2024].
o Achieves sub-optimal yet effective performance.
e Empirical Performance of GERM
o Achieves 92.14% lower average kurtosis and 82.77% lower
maximum infinity norm |x|., enabling robust quantization and
fast low-rank adaptation.
o Improves fine-tuning performance by 37.98% and quantization

performance by 64.34% over the baseline.
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Thank You!

Haozheng Luo*, Chenghao Qiu*, Maojiang Su, Zhihan Zhou, Zoe
Mehta, Guo Ye, Jerry Yao-Chieh Hu, Han Liu

hluo®@u.northwestern.edu
q1320460765@tju.edu.cn
maojiangsu2030Qu.northwestern.edu
zhihanzhou2020@u.northwestern.edu
zoe.mehta@vhhscougars.org
guoye20180@u.northwestern.edu
jhu@u.northwestern.edu
hanliu@northwestern.edu
https://github.com/MAGICS-LAB/GERM
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