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Spiked covariance model

The spiked covariance model was introduced by (Johnstone, 2001).

In the spiked covariance model, it observes n noisy samples

x i =
√
λgiv + ξi , i = 1, . . . , n, (1)

where

v ∈ Rp is a k-sparse unit unknown vector,

gi ∈ R are coefficients independently sampled from N (0, 1)∗,

ξi ∈ Rp are noisy vectors independently drawn from N (0, I )†,

gi and ξi are mutually independent,

λ > 0 is the signal strength.

We focus on how many samples are sufficient to estimate v from n nosiy samples of (1) up
to a constant error (in polynomial time).

∗standard Gaussain distribution with mean 0 and variance 1
†multivariate Gaussain distribution with mean 0 and variance I
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Sparse PCA

For n samples x1, . . . , xn drawn from (1), x i are zero-mean and

empirical covariance matrix: Σ̂ = 1
n

∑n
i=1 x ixT

i ,

population covariance matrix: Σ = E
[
Σ̂
]
= λvvT + I .

To estimate v , we consider the sparse PCA (SPCA) problem:

max
w

wT Σ̂w , subject to ∥w∥2 = 1, ∥w∥0 ≤ k, (2)

where the solution is an estimator of v .

The SPCA problem (2) is non-convex and NP-hard.
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Sample complexity

Information-theoretic sample complexity is n = Ω(k log p)∗.

Existing polynomial-time algorithms require at least O(k2) samples for successful recovery
(Deshpande and Montanari, 2016), highlighting a significant gap in sample efficiency.

Reductions from the planted-clique conjecture imply that, without further assumptions, no
polynomial-time algorithm can attain the information-theoretic sample complexity†.

Question: Can we design a polynomial-time algorithm to bridge the gap under some
assumption of the model (1)?

∗Vu and Lei, 2013; Berthet and Rigollet, 2013
†Berthet and Rigollet, 2013; Krauthgamer et al., 2015; Wang et al., 2016; Gao et al., 2017; Brennan et al., 2018
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Existing polynomial-time algorithms

Diagonal thresholding (Johnstone and Lu, 2009): Find the top k elements of the diagonal of

Σ̂ and compute the largest eigenvector of the corresponding k × k submatrix of Σ̂.
Sample complexity: Ω(k2 log p) (Amini and Wainwright, 2009)

Computational cost: O(np + nk2)

Covariance thresholding (Deshpande and Montanari, 2016): Soft-thresholding to Σ̂ and find

the top k elements of the largest eigenvector of the thresholded Σ̂.
Sample complexity: Ω(k2) (Deshpande and Montanari, 2016)

Computational cost: O(np2 + p3)

Semi-definite programming relaxation (d’Aspremont et al., 2004): Relax the SPCA problem
as a convex problem by using a new variable W = wwT and modifying the ℓ0-constriant.

Sample complexity: Ω(k2 log p) (Berthet and Rigollet, 2013)

Computational cost: O(np2 + p4 log p) (d’Aspremont et al., 2004)
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Proposed thresholding algorithm

Diagonal thresholding (Johnstone and Lu, 2009)

Statistical gap: gd := min
j∈S

∣∣∣[E[Σ̂]]
jj

∣∣∣− max
j∈Sc

∣∣∣[E[Σ̂]]
jj

∣∣∣ = λ ·min
j∈S

v2
j .

∗

A larger gd permits the smaller required number of samples.

For a larger statistical gap, we propose a novel thresholding algorithm‡:

1 Compute
{
Σ̂j,j

}n

j=1
and set j0 = argmax1≤j≤n Σ̂j,j ;

2 Compute Σ̂e j0 and set Ŝ as the indices of the top k elements of Σ̂e j0 in absolute value;†

3 Compute
[
Σ̂
]
Ŝ , set

[
v0

]
Ŝ as the unit leading eigenvector of

[
Σ̂
]
Ŝ and set

[
v0

]
Ŝc = 0;

4 Output v0 as the estimator of v .

Statistical gap: g := min
j∈S

∣∣∣E[Σ̂e j0

]
j

∣∣∣− max
j∈Sc

∣∣∣E[Σ̂e j0

]
j

∣∣∣ ≥ λ
∣∣v j0

∣∣ ·min
j∈S

∣∣v j

∣∣.
g ≥ gd

Computational cost: O(np + nk2)

∗S: the support of v
†e j : the j-th standard basis
‡Inspired by (Wu and Rebeschini, 2021; Cai et al., 2023)
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Proposed two-stage algorithm

To enhance the estimation performance, we propose a two-stage algorithm:

Initialization stage: proposed thresholding algorithm

Refinement stage: truncated power method (Yuan and Zhang, 2013)

Proposed two-stage algorithm for enhancing estimation performance

Input: Samples
{
x i

}n

i=1
, the sparsity k, parameter k ′.

// Initialization stage:

Compute an initial estimate v0 by proposed thresholidng algorithm;

// Refinement stage:

for t = 1, 2, . . . do

ṽ t = Tk′ (
1
n

∑n
i=1(x

T
i v t−1)x i );

v t = ṽ t/∥ṽ t∥2;
end
Output: v t

Computational cost: O(np+ nk2) for first stage and O(np) for each iteration in second stage
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Theoretical results

Noisy samples: x i =
√
λgiv + ξi , i = 1, . . . , n from (1).

Error: dist(v , v̂) := min
{
∥v − v̂∥2, ∥v + v̂∥2

}
.

Theorem (Proposed thresholding algorithm)

For any γ ∈ (0, 1], there exists universal constants C1,C2 > 0 such that if λ ≥ C1∥v∥−1
∞ and

n ≥ C2γ
−2k log p, with probability exceeding 1− 5p−1, the output v0 satisfies dist(v , v0) ≤ γ.

Theorem (Proposed two-stage algorithm)

There exist universal constants C3,C4,C5 > 0 such that if λ ≥ C3∥v∥−1
∞ and n ≥ C4k log p, with

probability exceeding 1− 5p−1, the output v t with parameter k ′ = C5k and an initial estimate v0

generated by proposed thresholding algorithm satisfies

dist(v t , v) ≤ d t · dist(v , v0)︸ ︷︷ ︸
Optimization error

+ d ′√k log p/n︸ ︷︷ ︸
Statistical error

, (3)

where 0 < d < 1 and d ′ > 0 are constants.
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Experiment results
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Figure 1: Comparisons of estimation error
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Figure 2: Comparisons of computational time

Our proposed algorithm demonstrates both estimation accuracy and computational efficiency.

∗DT: diagonal thresholding (Johnstone and Lu, 2009)
†Soft-CT: covariance thresholding in (Deshpande and Montanari, 2016)
‡Hard-CT: covariance thresholding in (Krauthgamer et al., 2015)
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