Fast and Provable Algorithms for Sparse PCA with Improved Sample Complexity

Jian-Feng Cai, Zhuozhi Xian, Jiaxi Ying

Department of Mathematics Hong Kong University of Science and Technology

Forty-Second International Conference on Machine Learning

Spiked covariance model

- The spiked covariance model was introduced by (Johnstone, 2001).
- In the spiked covariance model, it observes n noisy samples

$$\mathbf{x}_i = \sqrt{\lambda} g_i \mathbf{v} + \boldsymbol{\xi}_i, \quad i = 1, \dots, n,$$
 (1)

where

- $oldsymbol{v} \in \mathbb{R}^p$ is a k-sparse unit unknown vector,
- ullet $g_i \in \mathbb{R}$ are coefficients independently sampled from $\mathcal{N}(0,1)^*$,
- $oldsymbol{eta}_i \in \mathbb{R}^p$ are noisy vectors independently drawn from $\mathcal{N}(oldsymbol{0}, oldsymbol{I})^\dagger$,
- g_i and ξ_i are mutually independent,
- $\lambda > 0$ is the signal strength.
- We focus on how many samples are sufficient to estimate v from n nosiy samples of (1) up to a constant error (in polynomial time).

^{*}standard Gaussain distribution with mean 0 and variance 1

 $^{^\}dagger$ multivariate Gaussain distribution with mean 0 and variance I

Sparse PCA

- For n samples x_1, \ldots, x_n drawn from (1), x_i are zero-mean and
 - empirical covariance matrix: $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T$,
 - population covariance matrix: $oldsymbol{\Sigma} = \mathbb{E} igl[\hat{oldsymbol{\Sigma}} igr] = \lambda oldsymbol{v} oldsymbol{v}^T + oldsymbol{I}$.
- ullet To estimate $oldsymbol{v}$, we consider the sparse PCA (SPCA) problem:

$$\max_{\boldsymbol{w}} \boldsymbol{w}^{T} \hat{\boldsymbol{\Sigma}} \boldsymbol{w}, \quad \text{subject to } \|\boldsymbol{w}\|_{2} = 1, \ \|\boldsymbol{w}\|_{0} \leq k, \tag{2}$$

where the solution is an estimator of \mathbf{v} .

• The SPCA problem (2) is non-convex and NP-hard.

Sample complexity

- Information-theoretic sample complexity is $n = \Omega(k \log p)^*$.
- Existing polynomial-time algorithms require at least $O(k^2)$ samples for successful recovery (Deshpande and Montanari, 2016), highlighting a significant gap in sample efficiency.
- Reductions from the planted-clique conjecture imply that, without further assumptions, no polynomial-time algorithm can attain the information-theoretic sample complexity[†].
- Question: Can we design a polynomial-time algorithm to bridge the gap under some assumption of the model (1)?

^{*}Vu and Lei, 2013; Berthet and Rigollet, 2013

Berthet and Rigollet, 2013; Krauthgamer et al., 2015; Wang et al., 2016; Gao et al., 2017; Brennan et al., 2018

Existing polynomial-time algorithms

- Diagonal thresholding (Johnstone and Lu, 2009): Find the top k elements of the diagonal of $\hat{\Sigma}$ and compute the largest eigenvector of the corresponding $k \times k$ submatrix of $\hat{\Sigma}$.
 - Sample complexity: $\Omega(k^2 \log p)$ (Amini and Wainwright, 2009)
 - Computational cost: $O(np + nk^2)$
- Covariance thresholding (Deshpande and Montanari, 2016): Soft-thresholding to $\hat{\Sigma}$ and find the top k elements of the largest eigenvector of the thresholded $\hat{\Sigma}$.
 - Sample complexity: $\Omega(k^2)$ (Deshpande and Montanari, 2016)
 - Computational cost: $O(np^2 + p^3)$
- Semi-definite programming relaxation (d'Aspremont et al., 2004): Relax the SPCA problem as a convex problem by using a new variable $\mathbf{W} = \mathbf{w}\mathbf{w}^T$ and modifying the ℓ_0 -constriant.
 - Sample complexity: $\Omega(k^2 \log p)$ (Berthet and Rigollet, 2013)
 - Computational cost: $O(np^2 + p^4 \log p)$ (d'Aspremont et al., 2004)

Proposed thresholding algorithm

- Diagonal thresholding (Johnstone and Lu, 2009)
 - Statistical gap: $g_{\mathsf{d}} := \min_{j \in \mathcal{S}} \left| \left[\mathbb{E}[\hat{\Sigma}] \right]_{jj} \right| \max_{j \in \mathcal{S}^c} \left| \left[\mathbb{E}[\hat{\Sigma}] \right]_{jj} \right| = \lambda \cdot \min_{j \in \mathcal{S}} \mathbf{v}_j^2.^*$
 - \bullet A larger g_d permits the smaller required number of samples.
- For a larger statistical gap, we propose a novel thresholding algorithm[‡]:
 - $\textbf{ 0} \ \ \mathsf{Compute} \ \left\{ \hat{\boldsymbol{\Sigma}}_{j,j} \right\}_{j=1}^n \ \mathsf{and} \ \mathsf{set} \ j_0 = \mathsf{arg} \ \mathsf{max}_{1 \leq j \leq n} \ \hat{\boldsymbol{\Sigma}}_{j,j};$
 - ② Compute $\hat{\Sigma} e_{j_0}$ and set \hat{S} as the indices of the top k elements of $\hat{\Sigma} e_{j_0}$ in absolute value;
 - $\textbf{ Ompute } \left[\hat{\boldsymbol{\Sigma}}\right]_{\hat{\mathcal{S}}}, \text{ set } \left[\boldsymbol{v}^0\right]_{\hat{\mathcal{S}}} \text{ as the unit leading eigenvector of } \left[\hat{\boldsymbol{\Sigma}}\right]_{\hat{\mathcal{S}}} \text{ and set } \left[\boldsymbol{v}^0\right]_{\hat{\mathcal{S}}^c} = 0;$
 - Output \mathbf{v}^0 as the estimator of \mathbf{v} .
 - $\quad \text{Statistical gap: } g := \min_{j \in \mathcal{S}} \left| \mathbb{E} \big[\hat{\boldsymbol{\Sigma}} \boldsymbol{e}_{j_0} \big]_j \right| \max_{j \in \mathcal{S}^c} \left| \mathbb{E} \big[\hat{\boldsymbol{\Sigma}} \boldsymbol{e}_{j_0} \big]_j \right| \geq \lambda |\boldsymbol{v}_{j_0}| \cdot \min_{j \in \mathcal{S}} |\boldsymbol{v}_j|.$
 - g ≥ g_d
 - Computational cost: $O(np + nk^2)$

^{*} \mathcal{S} : the support of \boldsymbol{v}

 $^{{}^{\}dagger}e_{i}$: the j-th standard basis

Inspired by (Wu and Rebeschini, 2021; Cai et al., 2023)

Proposed two-stage algorithm

- To enhance the estimation performance, we propose a two-stage algorithm:
 - Initialization stage: proposed thresholding algorithm
 - Refinement stage: truncated power method (Yuan and Zhang, 2013)

Proposed two-stage algorithm for enhancing estimation performance

```
Input: Samples \{x_i\}_{i=1}^n, the sparsity k, parameter k'. // Initialization stage:
```

Compute an initial estimate \mathbf{v}^0 by proposed thresholiding algorithm;

// Refinement stage:

for
$$t = 1, 2, ...$$
 do
$$\begin{vmatrix}
\widetilde{\mathbf{v}}^t = T_{k'}(\frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i^T \mathbf{v}^{t-1}) \mathbf{x}_i); \\
\mathbf{v}^t = \widetilde{\mathbf{v}}^t / \|\widetilde{\mathbf{v}}^t\|_2;
\end{vmatrix}$$

end

Output: v^t

ullet Computational cost: $O(np+nk^2)$ for first stage and O(np) for each iteration in second stage

Theoretical results

- Noisy samples: $\mathbf{x}_i = \sqrt{\lambda} g_i \mathbf{v} + \boldsymbol{\xi}_i, \ i = 1, \dots, n \text{ from } (1).$
- Error: $\operatorname{dist}(\mathbf{v}, \hat{\mathbf{v}}) := \min \{ \|\mathbf{v} \hat{\mathbf{v}}\|_2, \|\mathbf{v} + \hat{\mathbf{v}}\|_2 \}.$

Theorem (Proposed thresholding algorithm)

For any $\gamma \in (0,1]$, there exists universal constants $C_1, C_2 > 0$ such that if $\lambda \geq C_1 \|\mathbf{v}\|_{\infty}^{-1}$ and $n \geq C_2 \gamma^{-2} k \log p$, with probability exceeding $1 - 5p^{-1}$, the output \mathbf{v}^0 satisfies $\mathrm{dist}(\mathbf{v}, \mathbf{v}^0) \leq \gamma$.

Theorem (Proposed two-stage algorithm)

There exist universal constants C_3 , C_4 , $C_5>0$ such that if $\lambda \geq C_3 \|\mathbf{v}\|_{\infty}^{-1}$ and $n\geq C_4 k\log p$, with probability exceeding $1-5p^{-1}$, the output \mathbf{v}^t with parameter $k'=C_5 k$ and an initial estimate \mathbf{v}^0 generated by proposed thresholding algorithm satisfies

$$\operatorname{dist}(\mathbf{v}^{t}, \mathbf{v}) \leq \underbrace{\mathbf{d}^{t} \cdot \operatorname{dist}(\mathbf{v}, \mathbf{v}^{0})}_{\operatorname{Optimization error}} + \underbrace{\mathbf{d}' \sqrt{k \log p / n}}_{\operatorname{Statistical error}}, \tag{3}$$

where 0 < d < 1 and d' > 0 are constants.

Experiment results

Figure 1: Comparisons of estimation error

Figure 2: Comparisons of computational time

Our proposed algorithm demonstrates both estimation accuracy and computational efficiency.

^{*}DT: diagonal thresholding (Johnstone and Lu, 2009)

[†]Soft-CT: covariance thresholding in (Deshpande and Montanari, 2016)

[‡]Hard-CT: covariance thresholding in (Krauthgamer et al., 2015)

References I

- Arash A. Amini and Martin J. Wainwright. High-dimensional analysis of semidefinite relaxations for sparse principal components. The Annals of Statistics, 37(5B):2877–2921, 2009.
- Quentin Berthet and Philippe Rigollet. Optimal detection of sparse principal components in high dimension. The Annals of Statistics. 41(4):1780 1815. 2013.
- Matthew Brennan, Guy Bresler, and Wasim Huleihel. Reducibility and computational lower bounds for problems with planted sparse structure. In *Conference On Learning Theory*, pages 48–166. PMLR, 2018.
- Jian-Feng Cai, Jingyang Li, and Juntao You. Provable sample-efficient sparse phase retrieval initialized by truncated power method. *Inverse Problems*, 39(7):075008, 2023.
- Alexandre d'Aspremont, Laurent Ghaoui, Michael Jordan, and Gert Lanckriet. A direct formulation for sparse PCA using semidefinite programming. Advances in neural information processing systems, 17, 2004.
- Yash Deshpande and Andrea Montanari. Sparse PCA via covariance thresholding. *Journal of Machine Learning Research*, 17(141): 1–41, 2016.
- Chao Gao, Zongming Ma, and Harrison H. Zhou. Sparse CCA: Adaptive estimation and computational barriers. The Annals of Statistics, 45(5):2074–2101, 2017.
- lain M Johnstone. On the distribution of the largest eigenvalue in principal components analysis. *The Annals of Statistics*, 29(2): 295–327, 2001.
- lain M Johnstone and Arthur Yu Lu. On consistency and sparsity for principal components analysis in high dimensions. *Journal of the American Statistical Association*, 104(486):682–693, 2009.
- Robert Krauthgamer, Boaz Nadler, and Dan Vilenchik. Do semidefinite relaxations solve sparse PCA up to the information limit? The Annals of Statistics, 43(3):1300–1322, 2015.
- Vincent Q. Vu and Jing Lei. Minimax sparse principal subspace estimation in high dimensions. The Annals of Statistics, 41(6), 2013.
- Tengyao Wang, Quentin Berthet, and Richard J. Samworth. Statistical and computational trade-offs in estimation of sparse principal components. *The Annals of Statistics*, 44(5):1896–1930, 2016.
- Fan Wu and Patrick Rebeschini. Hadamard wirtinger flow for sparse phase retrieval. In *Proceedings of The 24th International Conference on Artificial Intelligence and Statistics*, volume 130, pages 982–990, 2021.
- Xiao-Tong Yuan and Tong Zhang. Truncated power method for sparse eigenvalue problems. *Journal of Machine Learning Research*, 14(4), 2013.