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Background 1 Equivalence theorem 2 Memory-efficient pretraining
Training LLMs requires a lot of memory. Two Main result: Training with linear gradient Goal: Retain perplexity but reduce memory use
memory-efficient training methods stand out. transformations is equivalent to training with a Finding 1: Rematerializable transformations often
linear adapter. reduce memory without big impact to perplexity
Adapter methOdS W | | . Model Adapter form PPL  Mem.
. , , e explore a general setting: 1l oretrainin
Key idea: Freeze base weights and train only an PIOTE 8 9 . I oaiey ¥ o pa e e
dditi hation. E e Model is a d-dim vector, e.9., © = vec (W) ' '
additive perturbation. Fewer parameters means . I SVD (GaLore) W + PTA, P' — SVD(W) T
less optimizer and gradient memory e Gradient transformation is a linear map to a Gauss. (Flora) W +PTA, P~ kN(0,1) 13.88  5.02
. smaller space, I.e., S & QTXd Gadleemaciher W + PTA: PNkUnif({—l,l}) 13.86  5.02
Example: Low-rank (LORA, Hu et aI., 2021) .o : —(t) (t) Semi-orthogonal W +P'A, P'P = kI 13.71  5.27
¢ Optlmlzer takes gradlent © and states é.@ at Two-side Gauss. W +L'AR', L,R ~ kN(0,1) 15.28  5.02
+ - step t as inputs (e.g., SGD, Adam) Two-sideSVD W+ LTART,LT, RT =SVD(W) 14.27 6.55
Theorem 1 (Duality theorem) shows that training ~ Finding 2: INT8 quantization can be done without
4i p : o a model with gradient transformations, i.e., major degradation; NF4 incurs ~2-4 PPL penalty
Gradient transformation methods (A(St()_)’ étgl)) _ Optimizer(S@(t), é%) Finding 3: No obvious relationship between
Key idea: Perform optimizer update in 41 a®) 1 QT Al gradient reconstruction and PPL
lower-dimensional space. Reduces optimizer O = 0" +5 Age,
states, and hence memory. IS equigalgnt to tra!ninlg it with a Iine.a[]ad?g)ter, . 3 Distributed pretraining
Example: GalLore (Zhao et al., 2024) i;veﬁle ‘:'leJ thémzroiggcl):? nFe)\?vr;r:reatrire\’é\g: Freczm t:\riss A Goal: Memory-constrained distributed training
Opt. state WO L LTART _ I.WR Setting: Train for 500 steps and construct
o= — o pseudo-gradient (~DiLoCo; Doulllard et al., 2023).
Op timizer (Adapter view; A is parameter) (Gradient view)
New result: If S is Kronecker-factored, i.e., Finding: Identical < Random < Semi-orthogonal
S = R' ® L, then this establishes an (i.e., distributes dimensions across workers)

Previous work: The two methods above are

equivalence between MoRA (Jiang et al., 2024)

equivalent under certain conditions e : Method Projection Init. 200M 1B
and a two-sided version of Galore. Dt Tesioing (OO0 — YTERTYS
. " . = B ;—l Remark: In GalLore, the gradient transformation is Dist. ReLoRA (LTE) - 20.97  13.72
| periodically swapped out; this is equivalent to Identical Random P; =P, 21.51  14.28
One-sided LoRA Galore Rel oRA (Lialin et aI 2023) Independent Random 41[PZ-P;~F] =0 20.11 13.66
thuti N ' Distributed Random P;P; =0 19.81 13.51
Key contributions: i - -
Generalize the equivalence between Experiments: We conduct two studies. Approaches shine with many low-rank workers
1 . . . . .
adapters and gradient transformations In*2 we investigate two key knobs: choice of Mfattod (Rank, Workers)
Lo . . transformation and base weight quantization.
5 Exploit this equivalence to improve JNtQ B (128,8)  (256,4)  (512,2)
memory-efficient pretraining In 3 we explore whether worker-specitic Dist. Training (DiLoCo) ~ 17.81  18.00  18.56
, , , transformations help in distributed training. Dist. ReLoRA (LIE) 23.76 2097 19.54
Explore this equivalence in the context of o . Identical Random 23.96 21.51 20.32
3 Setup: 200M/1B pretraining; Llama architecture Independent Random 20.64 20.11 19.97

memory-constrained distributed pretraining Piintebatad Bandonm 20.32 19.81 19.66



