

On-the-Fly Adaptive Distillation of Transformer to Dual-State Linear Attention for Long-context LLM Serving

Tuesday, 15 July 11AM-2PM Poster Session 1

Yeonju Ro¹, Zhenyu Zhang¹, Souvik Kundu², Zhangyang Wang¹, Aditya Akella¹

¹University of Texas at Austin, USA ²Intel Labs, USA

Dynamic Resource Requirement

Burst Traffic and Prolonged Sessions Extend Context Length

Alternative Language Model Architecture

Trade-off between Self-Attention and Linear-Attention

	Computational Cost	Memory Cost (For KV cache)	Model Performance (Accuracy)
Self Attention	$O(n^2)$	O(n)	Great 👍
Linear Attention	O(n)	O(c)	Not Good
Mamba or Gated Linear Attention	O(n)	O(c)	Better than Linear Attn, Worse than Self Attn.

^{*} n: context length

Leveraging Tradeoff for Adaptive Inference System

Adaptively Distilling Self Attention to Dual-State Linear Attention (DSLA)

Dual-state Linear Attention (DSLA)

Resolve GLA's Recency Bias with Additional State

Adaptive Inference with DSLA-Serve

Progressively Converting Self Attention to DSLA

Performance on Long Context Benchmark LongBench

Table 1. Results of long context understanding. We report 25%, 50% converted layers of DSLA.

Methods	Cost	WikiText-2↓	Lambada ↓	Multi-	doc QA	Code U	Inderstanding	F	ew-shot Lear	ning
Methods	Cost	WIKITEXT-2 \$	Lambaua 4	HotpotQA ↑	2WikiMQA ↑	LCC ↑	Repobench ↑	TREC ↑	Samsum ↑	TriviaQA ↑
Llama2-7B	2T	8.79	4.13	5.63	10.24	69.83	56.88	59.00	39.1	86.19
GLA-7B	20B	NaN	4.98	3.61	6.89	41.26	44.24	28.50	16.94	57.68
Mamba-7B	N/A	10.55	4.05	1.23	0.80	17.56	10.54	11.0	4.55	15.23
Zamba-7B	1T	10.25	3.74	7.90	7.97	40.70	43.20	64.0	37.74	82.19
Ours [25%]	1.6B	9.26	4.14	11.07	14.20	66.91	51.53	55.0	38.66	87.46
Ours [50%]	1.6B	9.89	6.19	10.61	13.64	61.68	49.84	46.0	37.28	81.99

- Improvement over Baseline (Llama2-7B) model that it is distilled from:
 - Multi-doc QA (Hotpot QA: 5.63 → 11.07, 2WikiMQA: 10.24 → 14.20)
 - Few-shot Learning (TREC: 59.00 → 64.0, TriviaQA: 86.19 → 87.46)
- Outperform Hybrid Model in Multi-doc QA, Code-understanding, Samsum/TriviaQA
- Outperform GLA/Mamba in all tasks

End-to-end Improvement

Replaying Augmented Azure Inference Trace

Prompt Length	Distribution	Max Conv Rate	
seq_len < 2k	64.68%	12.5%	
2k ≤ seq_len < 4k	16.16%	25%	
4k ≤ seq_len < 8k	16.03%	37.5%	
8k ≤ seq_len	3.1%	50%	
Latency (Before)	93.64 ms		
Latency (After)	40.83 ms 2.29x Improvem		

Tuesday, 15 July 11AM-2PM Poster Session 1