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! Subset Selection  

• Given: a dataset of ! samples:
"!, "", … , "# ∼ &

• Goal:  Select a representative subset of size  ' ≪ !

  )$ ⊆ D	 = {"!, "", … , "#} ,  )$ = ' 
 Let &$ denote the empirical measure induced by )$ 
         &$ ≔

!
%∑&!∈(" δ&!

 Then, one aims to solve:

    arg	min
("⊆(, (" +%

	 Λ &$	, &

 for some appropriate Divergence Measure Λ ⋅	, ⋅ . 

• )$	should yield similar performance when used for training . 

&$&



Random Sampling 

• Given, a dataset of ! samples:

D	 = {"!, "", … , "#}

• Select, )$ ⊆ D,  )$ = ' , uniformly at random, i.e. 

;< )$ = = =
1
#
%
	 , 	 ∀= ⊆ ), = = '



Random Sampling

Without additional structure, all samples are exchangeable.

No meaningful notion of:
§ Distance: needs a metric space
§ Diversity: needs either a feature space or kernel
§ Importance: needs a label, loss, or task

Random Sampling is Minimax Optimal i.e., minimizes the worst-case 
risk under symmetric ( permutation invariant ) functionals.

Making it a strong baseline and the de-facto approach at scale.



Importance Scoring

• Assume access to an encoder 

• Define a scoring function quantifying sample importance.

v Geometric approaches compute score based on C " . 

v Task-aware scoring uses prediction signals:  
& " = softmax 	I,C " ∈ Δ-

                Loss, Entropy, Margin, Gradient Norm

• Rank samples from hard to easy, or from most informative to most prototypical. 

• Retain only a selected fraction, those deemed most representative, diverse, or 
informative under the scoring criterion.

• Random sampling is minimax optimal under symmetric functionals.
 
• But, if exchangeability is broken via structure, we can expect to improve.

C ∶ M. → M/



Importance Scoring

! Low score ⇒ Easy sample: 
      The sample lies close to the empirical centroid in the embedding space, 
      likely most prototypical or abundant.

" High score ⇒ Hard sample: 
      The sample lies far from the centroid — potentially diverse, rare, or difficult.

P0 = score("0, )) = C("0) 	−
1

!
T

&∈(
C(")

"



Noisy Sample Space - In the Wild 

• In practice, we rarely have access to clean, perfectly representative data 
from the target distribution due to imperfect semantic annotations, 
adversarial attacks, or simply measurement noise.

• Instead, we only have access to a noisy version of the target distribution: 

	&1(U, ") = 1 − ψ 	& " + ψ	X " 	

Y :  clean distribution
Z	:  adversarial distribution
[ ∈ [], ^/`) : corruption rate, denoting the fraction of corrupted samples 



Noise Model : Gross Corruption

• Given, a dataset of ! samples:
{"!, "", … , "#} ∼ &

• Adversary inspects all the samples, and replace
                                                            0 ≤ U < 1/2 
       fraction of the samples with arbitrary points. 

• The resulting noisy dataset 
	 	 	 ) = )2 ∪ )3  
       is referred as [ - grossly corrupted. 

       )2, )3 denote the sets of corrupt and clean samples, respectively.
|)2|
|)3|

=
U

U − 1
< 1



Noise Model

&1(U, ") = 1 − ψ 	& " + ψ	X " 	

6 7  6′(: = ;. ;=, 7)	 6′(: = ;. @, 7)	

Y :  clean distribution
Z	:  adversary chosen arbitrary distribution
[ ∈ [], ^/`) : corruption rate, denoting the fraction of corrupted samples 



Noise Model : Gross Corruption

• By allowing the corruption to be arbitrary, this noise model 
covers a wide variety (if not all) of corruption. e.g.,

q Feature Corruption (e.g., sensor faults, occlusion)
q Label Noise 
q Adversarial Attacks

• By further allowing the adversary to inspect the samples, it 
generalizes both – 

q Huber Contamination : oblivious, fixed corruption
q Byzantine Corruption: worst-case, adaptive corruption. 



Robust ! Subset Selection

Given: a noisy dataset of ! samples:
) = 	 {"!, "", … , "#} = )2 ∪ )3

generated via [ gross corruption, where the corruption rate

0 ≤ U =
|)2|
)

<
1

2
and no assumptions on the distribution of corrupt samples )2.

Goal: judiciously select a ' subset 
  )$ ⊆ D,  )$ = ' 

such that, the empirical measure induced by )$ is a close to the 
underlying clean distribution &, induced by )3.



Robustness Measure

We can measure the robustness of subset selection algorithms via breakdown point 
analysis - a classic tool in robust optimization to assess the resilience of an estimator.

Breakdown Point :
The breakdown point f, of an estimator g(⋅), is the smallest fraction U of 
corrupted samples that can cause it to diverge arbitrarily:

f, = inf 	0 ≤ U ≤ 1 ∶ 	 sup
(#

g )3 ∪ )2 − g )3 = ∞

g ⋅ 	is	said to achieve the optimal	breakdown	point

p4
∗ =

^

`

if it remains bounded ∀0 ≤ U <
!
".



Vulnerability of Importance Scoring
Given,	a	dataset	of	n	samples:	

D	 = {M*, M+, … , M,}

Consider a single grossly corrupt sample, 

PM = QR- 	− 	 (
%!	∈	'∖ 0%

S(M1)

This would result in estimating the centroid to any arbitrary target R-, chosen by 
the adversary causing the importance score to deviate arbitrarily :

Δs2 = R- 	− R + − 2 	S M1 − R	 3 R- 	− R

Thus, the asymptotic breakdown point is 
	 	 	 lim,→#

*
, → 0

Under gross corruption, the notion of importance score is broken.  



Pitfalls of Importance Scoring 
in Noisy Setting

V ∼ 64(: = ;. X, 7)	



⚖  Robustness vs Diversity

• Noisy or corrupted samples are often mistakenly scored as hard or informative

• In contrast, easy samples (far from decision boundary) are more robust,
but typically, prototypical and less diverse. 

• This leads to a selection bias:
 Discards rare but clean and informative examples.

• Introduces a robustness vs. diversity trade-off:
 Favoring robustness can shrink coverage of the data manifold, resulting in 

degraded generalization performance.

Is it possible to balance robustness and diversity in a 
single subset selection strategy?



Moment Matching

• Find a ' subset such that Maximum Mean Discrepancy (MMD) between the empirical 
distribution induced by the subset and and the original dataset is minimized.

• This would ensure that the empirical distribution &$ induced by )$ is a close 
approximation of  the original dataset.  

• However, in the noisy setting , this no longer guarantees convergence to the true 
underlying (uncorrupted) moment. Instead, the subset selection can be hijacked by a 
single bad sample, warping the solution towards an adversarial target.



Robust Moment Matching 

• Given: a noisy dataset of ! samples:

) = 	 {"!, "", … , "#} = )2 ∪ )3

       generated via [ gross corruption

• Our proposal is to solve a robust variant of the moment matching objective instead.

• The key idea is to replace the empirical mean with a robust surrogate, mitigating 
its susceptibility to corrupted samples. 



Robust Mean Estimation

Geometric Median.
Suppose, we are given a finite collection of observations 	C "! , C "" , … , C "# 	
defined over Hilbert space ℋ ∈ M., equipped with norm ⋅  and inner product ⋅,⋅  
operators. Then, the Geometric Median ( Fermat-Weber point ) is defined as: 



Robust Mean Estimation

In contrast, the empirical mean is the minimizer of the squared Euclidean distances:



Robust Mean Estimation

No Corruption 5% Corruption 20% Corruption

• However, this also makes the empirical mean sensitive to outliers, as extreme values 
have a disproportionately large eRect on the sum of squared distances. 

• On the other hand, the linear penalty in the GM computation ensures that the 
objective is less influenced by outliers, as deviations are not amplified quadratically.



Approximate GM
• The GM optimization problem is inherently non-smooth due to the presence of  the 

Euclidean norm r	 − C("0) , which leads to non-differentiability at points where 
multiple distances are equal, making gradient-based optimization difficult.

• Moreover, while a closed-form solution exists for s = 1, (Bajaj, 1988) showed that for 
dimensions s ≥ 2, in general, the GM does not admit a closed-form solution 
expressible in radicals, rendering its exact computation algebraically intractable.

• However, since the problem is convex, iterative algorithms can be used to 
approximate the GM efficiently to arbitrary precision.

• u	Approximate GM. 

Bajaj et. al. The algebraic degree of geometric optimization problems, Discrete & Computational Geometry, 1988 .



Geometric Median Matching

Leveraging the breakdown and translation invariance properties of GM, we instead 
propose to solve for the following objective:

In essence, the idea is to find a ' subset )$ ⊆ ), such that the empirical mean of 
the subset approximately matches the v approximate GM w678()) of the noisy 
dataset over a Reproducible Kernel Hilbert Space (RKHS). 



Geometric Median Matching

• an instance of the famous subset sum problem – known to be NP Hard via 
a reduction from k-set cover.

• Remarkably, although the squared-distance function is not submodular in 
)$, it can be transformed into a submodular set cover instance. 

• This implies that even though the underlying problem is NP-hard, we can 
efficiently compute a subset )$ whose moment matching error is within a 
(1 + ε) multiplicative factor of the optimal error, while maintaining a 
polynomial runtime.

• Feige et. al., A threshold of ln n for approximating set cover, Journal of the ACM (JACM), 1998
• Mirzasoleiman et. al., Coresets for data-eKicient training of machine learning models, ICML 2020
• Nemhauser et. al., An analysis of approximations for maximizing submodular set functions – I, Mathematical programming, 1978



Geometric Median Matching

• To solve the combinatorial GM Matching objective, we adopt a herding 
style greedy minimization procedure.

• Starting with a suitably chosen x9 ∈ ℋ, we repeatedly perform the 
following updates, adding one sample at a time, k times:

• Note the resemblance to greedy matching pursuits and the Frank-Wolfe 
algorithm for convex optimization over the convex hull of C " 	|	" ∈ ) .



Geometric Median Matching

• Conceptually, x, represents the vector pointing towards under sampled regions 
of the target distribution induced by ) at iteration g.

• Exploring underrepresented regions of the feature space, promotes diversity.

• by matching the GM rather than the empirical mean, the algorithm imposes larger 
penalties on outliers, which lie farther from the core distribution, prioritizing 
samples near the convex hull of uncorrupted points.

• Overall, GM Matching promotes diversity in a balanced manner, e]ectively 
exploring di]erent regions of the distribution while avoiding distant, noisy points, 
thus mitigating the robustness vs. diversity trade-o].



Robust Data Pruning 

No Corruption



Robust Data Pruning 

20% Corruption



Robust Data Pruning 

40 % Corruption



Theorem. 

Suppose that we are given a set of grossly corrupted samples ) = )3 ∪ )2, v-approx. 
GM oracle w678, further assume that the characteristic feature map C ⋅  is bounded. 
Then GM Matching guarantees that the mean of the selected ' subset converges to a  z 
neighborhood of the uncorrupted (true) mean w()3) at the rate {(:;) in RKHS :

where we denoted |"()3) denotes the variance of the uncorrupted samples. 

Convergence Guarantee



Convergence Guarantee

Consequently, we can establish the following bound:

Lemma.

• By matching the uncorrupted mean, )$ captures the uncorrupted 
distribution’s first moment in the RKHS.

• since, C ⋅  is assumed to be a characteristic feature map, bounding 
w )$ − w()3)  immediately bounds Maximum Mean Discrepancy.  



Convergence Guarantee 

}< = ~ �= − ~ �> < as a function of subset size



Experiments : No Corruption

Proxy Teacher –  In Domain, Shared Architecture.
ResNet-50 proxy teacher,  pretrained on (clean) Tiny-ImageNet / CIFAR100, is used to find 
important samples from (clean) Tiny-ImageNet / CIFAR 100 , to train a ResNet-50 from scratch. 



Experiments : No Corruption

Proxy Teacher –  In Domain, Shared Architecture.
ResNet-50 proxy teacher,  pretrained on (clean) ImageNet-1k is used to find important 
samples from (clean) Tiny-ImageNet / CIFAR 100 , used to train a ResNet-50 from scratch. 



Experiments : Feature Corruption 

Proxy Teacher – 
In Domain, Shared Architecture.

ResNet-50 proxy teacher,  pretrained on
(clean) Tiny-ImageNet, is used to find 
important samples from (noisy) Tiny-
ImageNet.

The chosen subset is used to train a 
ResNet-50 from scratch. 



Experiments : Label Noise

Proxy Teacher – 
In Domain, Shared Architecture.

ResNet-50 proxy teacher,  pretrained on
(clean) Tiny-ImageNet / CIFAR100, is 
used to find important samples from 
(noisy) Tiny-ImageNet / CIFAR 100.

The chosen subset is used to train a 
ResNet-50 from scratch. 



Experiments : Label Noise

Proxy Teacher – 
In Domain, Shared Architecture.
ResNet-50 proxy teacher,  pretrained on (clean) Tiny-ImageNet, is used to find 
important samples from (noisy) Tiny-ImageNet. The chosen subset is used to train 
a ResNet-50 from scratch. 



Experiments : Adversarial Attack

Proxy Teacher – 
In Domain, Shared Architecture.

ResNet-50 proxy teacher,  pretrained on
(clean) Tiny-ImageNet / CIFAR100, is 
used to find important samples from 
(noisy) Tiny-ImageNet / CIFAR 100.

The chosen subset is used to train a 
ResNet-50 from scratch. 



Experiments : Vision Transformers

Proxy Teacher –  In Domain, Shared Architecture.

ViT-S proxy teacher,  pretrained on CIFAR100, is used to find important samples 
from CIFAR 100. The chosen subset is used to train a ResNet-50 from scratch. 



Experiments : Generalization to Unseen Network

Proxy Teacher – 
In Domain, DiRerent Architecture.

ResNet-50 proxy teacher,  pretrained on 
(clean) Tiny-ImageNet, is used to find 
important samples from (clean) Tiny-
ImageNet.

The chosen subset is used to train a 
VGGNet-16 and Shu]leNet from scratch. 



Conclusion

• We introduced GM Matching, a robust data pruning algorithm that selects a k-subset such that 
the subset mean approximates the geometric median of a noisy dataset over a Reproducible 
Kernel Hibert Space.

• Unlike prior data pruning approaches that degrade under corruption, GM Matching is resilient to 
a wide array of corruption. 

• Limitations / Future Work: 
• performance depends on accurate geometric median estimation, which can be 

computationally challenging or unstable in degenerate or high-dimensional settings.

• Moreover, its effectiveness is influenced by the choice of embedding space and may 
deteriorate when encoders are biased or poorly calibrated.


