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Introduction

Problem: Approximate Bayesian Inference

Given some observations, how to estimate the underlying posterior
distribution.

Beneficial in quantifying and tackling uncertainty for deep learning
models.

Contribution: we propose a Bayesian Inference method with
improved generalization ability
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Background

Consider a family of neural networks fθ(x), where θ ∈ Θ ⊂ Rd , a
training set S = {(xi , yi )}ni=1 sampled from a distribution D

Prior works typically focus on approximating the empirical posterior

p(θ|S) ∝ p(θ)
n∏

i=1

p(yi |xi ,S,θ).

p(θ|S) = exp

(
− 1

n

n∑
i=1

ℓ(fθ(xi ), yi )

)
p(θ)

However, we may want to approximate p(θ|D) instead to avoid
overfitting
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Theoretical Analysis

To avoid overfitting, it is preferable to sample the particle models θ1:m
from the population posterior p(θ|D)
Proposition 1: Consider the problem

min
Q≪Pθ

{
Eθ∼Q[LD(θ)] + DKL(Q∥Pθ)

}
,

where we search over Q absolutely continuous w.r.t Pθ, and
LD(θ) = E(x ,y)∼D[ℓ(fθ(x), y)] is the population loss. The closed-form
solution to this problem is exactly the population posterior p(θ|D)
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Theoretical Analysis

Objective: Approximate p(θ|D) with a simpler distribution q∗

q∗ = argmin
q∈F

DKL

(
q(θ)∥p(θ|D)

)
.

We define F as the set of distributions for random variables of the
form ϑ = T (θ), where T : Θ→ Θ is a smooth, bijective mapping.

We restrict the set of T to the maps of the form T (θ) = θ + f (θ),
where f ∈ Hd is a vector-valued RKHS
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Theoretical Analysis

The optimization problem becomes:

f ∗ = argmin
f ∈Hd ,∥f ∥Hd≤ϵ

DKL

(
q[I+f ](θ)∥p(θ|D)

)
.

where we have

q[T ](ϑ) = q(T−1(ϑ))| det(∇ϑT−1(ϑ))|.
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Theoretical Analysis

Theorem (Informal)

Let q be any distribution and dVC denotes the VC dimension of he
hypothesis space F = {fθ : θ ∈ Θ}. For any ρ > 0, with probability of
1− δ over the training set S generated by distribution D, we have:

DKL

(
q[I+f ]||p(θ|D)

)
≤ max

f ′∈Hd ,∥f ′−f ∥≤ρ
DKL

(
q[I+f ′]||p(θ|S)

)

+O

√ log(1 + 1
ρ2
) + log

(
n
δ

)
n − 1

+

√
dVC log 2en

dVC

δ
√
2n

 .
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Theoretical Analysis

Goal: find a sequence of transportation functions {fk}k that converges to
the optimal f ∗, we can obtain the flow of distributions q(k) = q[I+f ].

argmax
∥f ′−f ∥Hd≤ρ

DKL

(
q[I+f ′]||p(θ|S)

)
≈ argmax

∥f̂ ∥Hd≤1

〈
f̂ ,∇f DKL

(
q[I+f ]∥p(θ|S)

)〉
Hd
.

f̂ ∗ =
∇f DKL

(
q[I+f ]∥p(·|S)

)
∥∥∥∥∥∇f DKL

(
q[I+f ]∥p(·|S)

)∥∥∥∥∥
Hd

.
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Theoretical Analysis

Functional sharpness-aware procedure

f̂ ∗
k = ρ

∇f DKL

(
q[I+f ]∥p(·|S)

)∣∣∣
f =fk∥∥∥∇f DKL

(
q[I+f ]∥p(·|S)

)∣∣∣
f =fk

∥∥∥
Hd

fk+1 = fk − ϵ∇f DKL

(
q[I+f ]∥p(·|S)

)∣∣∣
f =fk+f̂ ∗

k

q(k+1) = q[I+fk+1].

Lemma

Let F [f ] = DKL(q[I+f ]∥p(·|S)). When ∥f ∥ is sufficiently small,

∇f F [f ] ≈ −Eq[∇θ log p(θ + f (θ)|S)k(θ, ·) +∇θk(θ, ·)].
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Practical Algorithm

Input: Initial particles {θ(0)
i }mi=1, number of epochs N, step size ρ > 0

Output: A set of particles {θi}mi=1 that approximates the population
posterior distribution p(θ|D)
for iteration k do

ε̂
(k)
i ← ρ

ϕ(θ
(k)
i )

∥ϕ(θ(k)
i )∥

where

ϕ(θ) = − 1
n

∑m
j=1[k(θ,θ

(k)
j )∇

θ
(k)
j

log p(θ
(k)
j |S) +∇θ

(k)
j

k(θ,θ
(k)
j )]

θ
(k+1)
i ← θ

(k)
i − ϵiψ(θ

(k)
i , ε̂

(k)
i )

where
ψ(θ, ε) = − 1

n

∑m
j=1[k(θ,θ

(k)
j )∇

θ
(k)
j

log p(θ
(k)
j + ε|S) +∇

θ
(k)
j

k(θ,θ
(k)
j )].

end for
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Experimental Results

Experimental settings:

Problem: Fine-tune the Vision Transformer architecture ViT-B/16

Dataset: VTAB-1K, consisting of 19 datasets on three domains:
Natural, Specialized, Structured

Baselines: full fine-tune, AdamW, SAM, BayesTune, SADA-JEM,
SGLD, Sharpness-Aware Bayesian Neural Network, SVGD, Bayesian
Deep Ensemble
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Experimental Results
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Ablation Studies

FHBI reduces the sharpness of every particle and promotes ensemble
diversity.
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Conclusion

We presented a framework that strengthens prior generalization
bounds from Euclidean spaces to the reproducing kernel Hilbert
spaces (RKHS).

We translated this framework to the context of Bayesian inference.

We presented Flat Hilbert Bayesian Inference (FHBI), which improves
generalization ability upon prior works.

Tuan Truong (Qualcomm) Flat Hilbert Bayesian Inference ICML 2025 15 / 16



Thank you for your attention.
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