Improving Generalization with Flat Hilbert Bayesian Inference

Tuan Truong $^{*, 1}$ Quyen Tran $^{*, 1}$ Quan Pham 1 Nhat Ho 2 Dinh Phung 3 Trung Le 3

¹Qualcomm AI Research

²The University of Texas at Austin

³Monash University

ICML 2025

Introduction

Problem: Approximate Bayesian Inference

 Given some observations, how to estimate the underlying posterior distribution.

Introduction

Problem: Approximate Bayesian Inference

- Given some observations, how to estimate the underlying posterior distribution.
- Beneficial in quantifying and tackling uncertainty for deep learning models.

Introduction

Problem: Approximate Bayesian Inference

- Given some observations, how to estimate the underlying posterior distribution.
- Beneficial in quantifying and tackling uncertainty for deep learning models.
- **Contribution**: we propose a Bayesian Inference method with *improved generalization ability*

Background

• Consider a family of neural networks $f_{\theta}(x)$, where $\theta \in \Theta \subset \mathbb{R}^d$, a training set $S = \{(x_i, y_i)\}_{i=1}^n$ sampled from a distribution D

Background

- Consider a family of neural networks $f_{\theta}(x)$, where $\theta \in \Theta \subset \mathbb{R}^d$, a training set $S = \{(x_i, y_i)\}_{i=1}^n$ sampled from a distribution \mathcal{D}
- Prior works typically focus on approximating the empirical posterior

$$p(\theta|S) \propto p(\theta) \prod_{i=1}^n p(y_i|x_i,S,\theta).$$

$$p(\theta|S) = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\ell(f_{\theta}(x_i), y_i)\right)p(\theta)$$

Background

- Consider a family of neural networks $f_{\theta}(x)$, where $\theta \in \Theta \subset \mathbb{R}^d$, a training set $S = \{(x_i, y_i)\}_{i=1}^n$ sampled from a distribution \mathcal{D}
- Prior works typically focus on approximating the empirical posterior

$$p(\theta|S) \propto p(\theta) \prod_{i=1}^n p(y_i|x_i,S,\theta).$$

$$p(\theta|S) = \exp\left(-\frac{1}{n}\sum_{i=1}^{n}\ell(f_{\theta}(x_i), y_i)\right)p(\theta)$$

ullet However, we may want to approximate $p(oldsymbol{ heta}|\mathcal{D})$ instead to avoid overfitting

To avoid overfitting, it is preferable to sample the particle models $\theta_{1:m}$ from the population posterior $p(\theta|\mathcal{D})$

Proposition 1: Consider the problem

$$\min_{\mathbb{Q} \ll \mathbb{P}_{\theta}} \Bigg\{ \mathbb{E}_{\theta \sim \mathbb{Q}}[\mathcal{L}_{\mathcal{D}}(\theta)] + D_{\mathrm{KL}}(\mathbb{Q} \| \mathbb{P}_{\theta}) \Bigg\},$$

where we search over $\mathbb Q$ absolutely continuous w.r.t $\mathbb P_\theta$, and $\mathcal L_{\mathcal D}(\theta) = \mathbb E_{(x,y)\sim \mathcal D}[\ell(f_\theta(x),y)]$ is the population loss. The closed-form solution to this problem is exactly the **population posterior** $p(\theta|\mathcal D)$

ullet Objective: Approximate $p(m{ heta}|\mathcal{D})$ with a simpler distribution q^*

$$q^* = rg \min_{q \in \mathcal{F}} D_{\mathrm{KL}} \Bigg(q(oldsymbol{ heta}) \| p(oldsymbol{ heta} | \mathcal{D}) \Bigg).$$

- We define \mathcal{F} as the set of distributions for random variables of the form $\vartheta = \mathcal{T}(\theta)$, where $\mathcal{T}: \Theta \to \Theta$ is a smooth, bijective mapping.
- We restrict the set of T to the maps of the form $T(\theta) = \theta + f(\theta)$, where $f \in \mathcal{H}^d$ is a **vector-valued RKHS**

The optimization problem becomes:

$$m{f}^* = \mathop{\mathrm{arg\,min}}_{m{f} \in \mathcal{H}^d, \|m{f}\|_{\mathcal{H}^d} \leq \epsilon} D_{\mathrm{KL}} \Bigg(q_{[m{I} + m{f}]}(m{ heta}) \| p(m{ heta} | \mathcal{D}) \Bigg).$$

where we have

$$q_{[T]}(\vartheta) = q(T^{-1}(\vartheta))|\det(\nabla_{\vartheta}T^{-1}(\vartheta))|.$$

Theorem (Informal)

Let q be any distribution and $d_{\rm VC}$ denotes the VC dimension of he hypothesis space $\mathcal{F}=\{f_{\pmb{\theta}}: \pmb{\theta}\in\Theta\}$. For any $\rho>0$, with probability of $1-\delta$ over the training set $\mathcal S$ generated by distribution $\mathcal D$, we have:

$$egin{aligned} D_{\mathrm{KL}}\Big(q_{[m{I}+m{f}]}||p(m{ heta}|\mathcal{D})\Big) &\leq \max_{m{f}' \in \mathcal{H}^d, \|m{f}' - m{f}\| \leq
ho} D_{\mathrm{KL}}\Big(q_{[m{I}+m{f}']}||p(m{ heta}|\mathcal{S})\Big) \ &+ \mathcal{O}\left(\sqrt{rac{\log(1+rac{1}{
ho^2}) + \log\left(rac{n}{\delta}
ight)}{n-1}} + rac{\sqrt{d_{VC}\lograc{2en}{d_{VC}}}}{\delta\sqrt{2n}}
ight). \end{aligned}$$

Goal: find a sequence of transportation functions $\{f_k\}_k$ that converges to the optimal f^* , we can obtain the flow of distributions $q^{(k)} = q_{[I+f]}$.

$$\begin{split} \operatorname*{arg\;max}_{\|\boldsymbol{f}'-\boldsymbol{f}\|_{\mathcal{H}^d} \leq \rho} D_{\mathrm{KL}}\Big(q_{[\boldsymbol{I}+\boldsymbol{f}']}||p(\boldsymbol{\theta}|\mathcal{S})\Big) &\approx \operatorname*{arg\;max}_{\|\boldsymbol{\hat{f}}\|_{\mathcal{H}^d} \leq 1} \Big\langle \boldsymbol{\hat{f}}, \nabla_{\boldsymbol{f}} D_{\mathrm{KL}}\Big(q_{[\boldsymbol{I}+\boldsymbol{f}]}\|p(\boldsymbol{\theta}|\mathcal{S})\Big) \Big\rangle_{\mathcal{H}^d} \\ & \boldsymbol{\hat{f}}^* = \frac{\nabla_{\boldsymbol{f}} D_{\mathrm{KL}}\Big(q_{[\boldsymbol{I}+\boldsymbol{f}]}\|p(\cdot|\mathcal{S})\Big)}{\left\|\nabla_{\boldsymbol{f}} D_{\mathrm{KL}}\Big(q_{[\boldsymbol{I}+\boldsymbol{f}]}\|p(\cdot|\mathcal{S})\Big)\right\|_{\mathcal{H}^d}}. \end{split}$$

Functional sharpness-aware procedure

$$\begin{aligned} \hat{\mathbf{f}}_{k}^{*} &= \rho \frac{\nabla_{\mathbf{f}} D_{\mathrm{KL}} \Big(q_{[\mathbf{I}+\mathbf{f}]} \| p(\cdot | \mathcal{S}) \Big) \Big|_{\mathbf{f} = \mathbf{f}_{k}}}{\| \nabla_{\mathbf{f}} D_{\mathrm{KL}} \Big(q_{[\mathbf{I}+\mathbf{f}]} \| p(\cdot | \mathcal{S}) \Big) \Big|_{\mathbf{f} = \mathbf{f}_{k}} \|_{\mathcal{H}^{d}}} \\ \mathbf{f}_{k+1} &= \mathbf{f}_{k} - \epsilon \nabla_{\mathbf{f}} D_{\mathrm{KL}} \Big(q_{[\mathbf{I}+\mathbf{f}]} \| p(\cdot | \mathcal{S}) \Big) \Big|_{\mathbf{f} = \mathbf{f}_{k} + \hat{\mathbf{f}}_{k}^{*}} \\ q^{(k+1)} &= q_{[\mathbf{I}+\mathbf{f}_{k+1}]}. \end{aligned}$$

Functional sharpness-aware procedure

$$\begin{aligned} \hat{\mathbf{f}}_{k}^{*} &= \rho \frac{\nabla_{\mathbf{f}} D_{\mathrm{KL}} \Big(q_{[\mathbf{I}+\mathbf{f}]} \| p(\cdot | \mathcal{S}) \Big) \Big|_{\mathbf{f} = \mathbf{f}_{k}}}{\| \nabla_{\mathbf{f}} D_{\mathrm{KL}} \Big(q_{[\mathbf{I}+\mathbf{f}]} \| p(\cdot | \mathcal{S}) \Big) \Big|_{\mathbf{f} = \mathbf{f}_{k}} \|_{\mathcal{H}^{d}}} \\ \mathbf{f}_{k+1} &= \mathbf{f}_{k} - \epsilon \nabla_{\mathbf{f}} D_{\mathrm{KL}} \Big(q_{[\mathbf{I}+\mathbf{f}]} \| p(\cdot | \mathcal{S}) \Big) \Big|_{\mathbf{f} = \mathbf{f}_{k} + \hat{\mathbf{f}}_{k}^{*}} \\ q^{(k+1)} &= q_{[\mathbf{I}+\mathbf{f}_{k+1}]}. \end{aligned}$$

Lemma

Let
$$m{F}[m{f}] = D_{\mathrm{KL}}(q_{[m{I}+m{f}]} \| p(\cdot | \mathcal{S}))$$
. When $\| m{f} \|$ is sufficiently small,

$$\nabla_{\mathbf{f}} \mathbf{F}[\mathbf{f}] \approx -\mathbb{E}_{q}[\nabla_{\boldsymbol{\theta}} \log p(\boldsymbol{\theta} + \mathbf{f}(\boldsymbol{\theta})|\mathcal{S})k(\boldsymbol{\theta}, \cdot) + \nabla_{\boldsymbol{\theta}} k(\boldsymbol{\theta}, \cdot)].$$

Practical Algorithm

Input: Initial particles $\{\theta_i^{(0)}\}_{i=1}^m$, number of epochs N, step size $\rho > 0$ **Output:** A set of particles $\{\theta_i\}_{i=1}^m$ that approximates the population posterior distribution $p(\theta|\mathcal{D})$

for iteration k do

$$\hat{arepsilon}_i^{(k)} \leftarrow
ho rac{\phi(oldsymbol{ heta}_i^{(k)})}{\|\phi(oldsymbol{ heta}_i^{(k)})\|}$$
 where

$$\phi(\theta) = -\frac{1}{n} \sum_{j=1}^{m} [k(\theta, \theta_j^{(k)}) \nabla_{\theta_j^{(k)}} \log p(\theta_j^{(k)} | \mathcal{S}) + \nabla_{\theta_j^{(k)}} k(\theta, \theta_j^{(k)})]$$

$$\theta_i^{(k+1)} \leftarrow \theta_i^{(k)} - \epsilon_i \psi(\theta_i^{(k)}, \hat{\varepsilon}_i^{(k)})$$

where

$$\psi(\boldsymbol{\theta}, \varepsilon) = -\frac{1}{n} \sum_{j=1}^{m} [k(\boldsymbol{\theta}, \boldsymbol{\theta}_{j}^{(k)}) \nabla_{\boldsymbol{\theta}_{j}^{(k)}} \log p(\boldsymbol{\theta}_{j}^{(k)} + \varepsilon | \mathcal{S}) + \nabla_{\boldsymbol{\theta}_{j}^{(k)}} k(\boldsymbol{\theta}, \boldsymbol{\theta}_{j}^{(k)})].$$

end for

Experimental Results

Experimental settings:

- Problem: Fine-tune the Vision Transformer architecture ViT-B/16
- Dataset: VTAB-1K, consisting of 19 datasets on three domains: Natural, Specialized, Structured
- Baselines: full fine-tune, AdamW, SAM, BayesTune, SADA-JEM, SGLD, Sharpness-Aware Bayesian Neural Network, SVGD, Bayesian Deep Ensemble

Experimental Results

Table 1. VTAB-1K results evaluated on Top-1 accuracy. All methods are applied to finetune the same set of LoRA parameters on ViT-B/16 pre-trained with ImageNet-21K dataset.

pre-trained	to-tunion with thingened 21h dataset.																			
	Natural								Speci	alized		Structured								
Method	CIFAR100	Caltech101	DTD	Flower102	Pets	SVHN	Sun397	Camelyon	EuroSAT	Resisc45	Retinopathy	Clevr-Count	Clevr-Dist	DMLab	КТТП	dSpr-Loc	dSpr-Ori	sNORB-Azi	sNORB-Ele	AVG
FFT	68.9	87.7	64.3	97.2	86.9	87.4	38.8	79.7	95.7	84.2	73.9	56.3	58.6	41.7	65.5	57.5	46.7	25.7	29.1	65.6
AdamW	67.1	90.7	68.9	98.1	90.1	84.5	54.2	84.1	94.9	84.4	73.6	82.9	69.2	49.8	78.5	75.7	47.1	31.0	44.0	72.0
SAM	72.7	90.3	71.4	99.0	90.2	84.4	52.4	82.0	92.6	84.1	74.0	76.7	68.3	47.9	74.3	71.6	43.4	26.9	39.1	70.5
DeepEns	69.1	88.9	67.7	98.9	90.7	85.1	54.5	82.6	94.8	82.7	75.3	46.6	47.1	47.4	68.2	71.1	36.6	30.1	35.6	67.0
BayesTune	67.2	91.7	69.5	99.0	90.7	86.4	54.7	84.9	95.3	84.1	75.1	82.8	68.9	49.7	79.3	74.3	46.6	30.3	42.8	72.2
SGLD	68.7	91.0	67.0	98.6	89.3	83.0	51.6	81.2	93.7	83.2	76.4	80.0	70.1	48.2	76.2	71.1	39.3	31.2	38.4	70.4
SADA-JEM	70.3	91.9	70.2	98.2	91.2	85.6	54.7	84.3	94.1	83.4	77.0	79.9	72.1	51.6	79.4	70.7	45.3	29.6	40.1	72.1
SA-BNN	65.1	91.5	71.0	98.9	89.4	89.3	55.2	83.2	94.5	86.4	75.2	61.4	63.2	40.0	71.3	64.5	34.5	27.2	31.2	68.1
SVGD	71.3	90.2	71.0	98.7	90.2	84.3	52.7	83.4	93.2	86.7	75.1	75.8	70.7	49.6	79.9	69.1	41.2	30.6	33.1	70.9
FHBI	74.1	93.0	74.3	99.1	92.4	87.3	56.5	85.3	95.0	87.2	79.6	80.1	72.3	52.2	80.4	72.8	51.2	31.9	41.3	73.7
	(.17)	(.42)	(.15)	(0.20)	(0.21)	(.52)	(.12)	(.31)	(.57)	(.21)	(.20)	(.16)	(.27)	(.47)	(.31)	(.50)	(.32)	(.36)	(.59)	

Figure 2. Domain-wise average scores on Natural (left), Specialized (middle), and Structured (right) datasets. FHBI performs best in all three domains compared to the Bayesian inference baselines.

Experimental Results

Table 2. VTAB-1K results evaluated on the Expected Calibration Error (ECE) metric. All methods are applied to finetune the same set of LoRA parameters on ViT-B/16 pre-trained with ImageNet-21K dataset.

LONA parameters on VII-B/10 pic-trained with ThageNet - 21K dataset.																				
				Natura	ı				Speci	alized		Structured								
Method	CIFAR100	Caltech101	DTD	Flower102	Pets	SVHN	Sun397	Camelyon	EuroSAT	Resisc45	Retinopathy	Clevr-Count	Clevr-Dist	DMLab	KITTI	dSpr-Loc	dSpr-Ori	sNORB-Azi	sNORB-Ele	AVG
FFT	0.29	0.23	0.20	0.13	0.27	0.19	0.45	0.21	0.13	0.18	0.17	0.41	0.44	0.42	0.22	0.14	0.23	0.24	0.40	0.26
AdamW	0.38	0.19	0.18	0.05	0.09	0.10	0.14	0.11	0.09	0.12	0.11	0.12	0.19	0.34	0.18	0.14	0.21	0.18	0.31	0.17
SAM	0.21	0.25	0.20	0.11	0.12	0.15	0.14	0.17	0.16	0.14	0.09	0.12	0.17	0.24	0.16	0.21	0.19	0.13	0.16	0.16
DeepEns	0.24	0.12	0.22	0.04	0.10	0.13	0.23	0.16	0.07	0.15	0.21	0.31	0.32	0.36	0.13	0.32	0.31	0.16	0.29	0.20
BayesTune	0.32	0.08	0.20	0.03	0.85	0.12	0.22	0.13	0.07	0.13	0.22	0.12	0.23	0.30	0.24	0.28	0.28	0.31	0.26	0.23
SGLD	0.26	0.20	0.17	0.05	0.18	0.14	0.23	0.18	0.09	0.12	0.32	0.26	0.29	0.21	0.26	0.42	0.39	0.11	0.24	0.22
SADA-JEM	0.22	0.11	0.20	0.05	0.13	0.16	0.18	0.15	0.21	0.23	0.26	0.19	0.20	0.25	0.27	0.35	0.20	0.14	0.13	0.19
SA-BNN	0.22	0.08	0.19	0.15	0.12	0.12	0.24	0.13	0.06	0.12	0.18	0.14	0.21	0.22	0.24	0.25	0.41	0.46	0.34	0.20
SVGD	0.20	0.13	0.19	0.04	0.16	0.09	0.20	0.15	0.11	0.13	0.12	0.17	0.21	0.30	0.18	0.21	0.25	0.14	0.26	0.18
FHBI	0.19	0.10	0.16	0.06	0.06	0.09	0.16	0.09	0.05	0.12	0.08	0.14	0.15	0.21	0.15	0.16	0.18	0.11	0.07	0.12

Ablation Studies

FHBI reduces the sharpness of every particle and promotes ensemble diversity.

Conclusion

- We presented a framework that strengthens prior generalization bounds from Euclidean spaces to the reproducing kernel Hilbert spaces (RKHS).
- We translated this framework to the context of Bayesian inference.
- We presented Flat Hilbert Bayesian Inference (FHBI), which improves generalization ability upon prior works.

Thank you for your attention.

