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Absiract

Recently, spatio-temporal graph convolutional networks have
achieved dominant performance in spatio-temporal prediction
tasks. However, most models relying on node-to-node messaging
interaction  exhibit  sensitivity  to  spatio-temporal  shifts,
encountering out-of-distribution (OOD) challenges. To address
these issues, we Iintroduce Spatio-Temporal OOD Processor
(STOP), which employs a cenfralized messaging mechanism

Methdology
A Spatiotemporal OOD Processor

Our model consists of three parts: it incorporates a robust
centralized messaging mechanism and a message perturbation
mechanism.
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Experiment

Dataset settings: For the evaluation of femporal shift, we frain the models using data from the first year and test them on each subseqguent
year. The training set comprises the first 60% of data from the initial year dataset, while the following 20% of data is used as the validation

set. In each subsequent year, the last 20% of data is designated as the test set. This setup aims to accentuate the temporal distribution
difference between the test and training sets, while maintaining a ratfio of approximately 6:2:2 for the training, validation, and test sets.
Regarding structural shift evaluation, we select a subset of hodes for training and validation. In the test set, we decrease the number of
nodes by 10% and introduce 30% new nodes to simulate shifts in the graph structure and scale.
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Figure 1. Spatiotemporal OOD.
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Figure 2. Overall architecture (upper) and centralized messaging mechanism for
robust spatio-temporal interaction.

Ceniralized messaging

It constrains nodes to interact exclusively with Context Aware
Units (ConAU) for feature interaction, thereby enhancing the
resilience of model to spatio-temporal shifts. For the i-th head,
the calculation of low-rank attention is as follows,

A(Q,K, V) = Softmax(aQK") x Softmax(aKQ")V.

Diffusion Aggregation

Hyperparameter Sensitivity Analysis: We analyze the sensitivity of the numer of ConAU and GenPU on the SD (upper) and KnowAir (lower)
datasets on the Figure \ref{hyper}. When the number of ConAU K is set to 8 in SD dataset and 4 in KnowAiIr dataset. When K exceeds this
value, the model creates too many ConAU, making it unable to focus on extracting invariant contextual features, thus introducing noise.
When K is less than this value, too few perception units fail fo learn sufficient invariant knowledge, leading to a decrease in the model's
generalization performance. The number of GenPU M is set fo 3 in SD dataset and 4 in KnowAir dataset. A smaller M may not provide
sufficient training environment diversity, resulting in performance degradation. On the other hand, an excessive number of GenPU does not
necessarily improve performance. Too large M means that the generated environment is too complex, which increases the learning
difficulty of the model to extract causal knowledge.

Ablation Study: As lllustrated in Figure~\ref{ablation}, the results show that each component of STOP helps to improve the OOD
generalization. "w/o Y' achieves poor prediction performance, which proves that the proposed collaborative component is effective for
OOD. "w/o ConAU" removes ConAU and achieves high errors, proving that spatio-temporal interaction is also necessary in OOD scenarios.
"‘w/o GenPU" has higher prediction errors because GenPU can help the model extract causal knowledge and enhance model robustness.
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can no longer aggregate information along the frained paths.
This propagation of errors through the node-to-node messaging
mechanism adversely affects the accuracy of the entire graph
representation. On the other hand, generating accurate
representations for new nodes, i.e., inductive learning, also poses
a significant challenge for STGNNSs.

In fact, our proposed objective belongs to the DRO paradigm,
which theoretically has superior generalization compared o the
Empirical Risk Minimization (ERM) paradigm followed by most
spatio-temporal models. ERM optimizes the model using only
single training environment.
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Figure 4. Ablation experiments on SD dataset.
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