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Motivation: Algorithmic Pricing and Collusion =~ Theoretical Results Experimental Results
e Algorithmic pricing has supplanted manual pricing Challenges: 5= (D.D) s — (C.C) s~ (D.C)
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e Academic and institutional concerns over tacit collusion e Show convergence toward a specific policy o o —

— OECD, Competition Bureau Canada
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learn to cooperate, thereby /eading to higher priceg? o Q(tgj,c),c < {f% Evolution of the Q-values as a function of the number of iterations.
The larger the exploration parameter €, the smaller the number of
trajectories yielding cooperation.
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e Multi-agent Q-Learning learning guided agents move away from the always defect policy and learn
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. » 0 Theorem 2: e-greedy case with ¢ > 0
m(als) = { T AT Al Maatess Suppose the initial policy is always defect and the initial state sy is defect
¢ else defect: sy = DD. Under the optimistic Q-values initialization, Q-

learning guided agents move away from the always defect policy and learn
the cooperative Pavlov policy with high probability.
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