

Self-play Q-Learners Can Provably Collude in the Iterated Prisoner's Dilemma

Quentin Bertrand Inria

Emilio Calvano
Luiss University
Toulouse School of Economics

Juan Duque Mila & Université de Montréal

Gauthier Gidel
Mila & Université de Montréal
Canada CIFAR Al Chair

Motivation: Algorithmic Pricing and Collusion

- Algorithmic pricing has supplanted manual pricing
- $\hookrightarrow \approx 1/2$ of Amazon's largest third-party sellers
- Academic and institutional concerns over tacit collusion
- → OECD, Competition Bureau Canada

Question: Could pricing algorithms autonomously learn to cooperate, thereby leading to higher prices?

Contributions:

- For optimistic enough Q-values, self-play Q-learning guided agents learn a cooperative policy
- ullet Extend the latter result for $\epsilon > 0$ -greedy Q-learning guided agents
- Empirically demonstrated the convergence to a cooperative policy

Problem Setting:

• Iterated Prisoner's Dilemma

$$ightharpoonup r_{
m DC} > r_{
m CC} > r_{
m DD} > r_{
m CD}$$
 and $2r_{
m CC} > r_{
m CD} + r_{
m DC}$

Cooperate

Cooperate

 $r_{
m CC} = r_{
m CD} = r_{
m CD}$

• Multi-agent Q-Learning

$$Q_{s_t,a_t^1}^{\star} = \mathbb{E}_{a_t^2 \sim \pi_2(\cdot|s_t)} \left(r_{a_t^1,a_t^2}^1 + \gamma \max_{a} Q_{(a_t^1,a_t^2),a}^{\star} \right) .$$

$$Q_{s_t,a_t^1}^{t+1} = Q_{s_t,a_t^1}^t + \alpha \left(r_{a_t^1,a_t^2}^1 + \gamma \max_{a'} Q_{(a_t^1,a_t^2),a'}^t - Q_{s_t,a_t^1}^t \right)$$

Self-play

$$a_t^1, a_t^2 \sim \pi(\cdot|s_t)$$
 // same Q-table for a_t^1 and a_t^2

$$Q_{s_t,a_t^1}^\star = \mathbb{E}_{a_t^2 \sim \pi(\cdot|s_t)} \left(r_{a_t^1,a_t^2} + \gamma \max_{a} Q_{(a_t^1,a_t^2),a}^\star \right)$$

Epsilon greedy

$$\pi(a|s) = egin{cases} 1 - \epsilon & ext{if } a = rg \max_a Q_{s,a} \\ \epsilon & ext{else} \end{cases}$$

Theoretical Results

Challenges:

- Multiple fixed-point policies
- Show convergence toward a specific policy

Assumptions: Optimistic enough *Q*-values

- $ullet rac{r_{
 m DD}}{1-\gamma} < Q_{
 m (D,D),C}^{t_0}$
- $ullet Q_{\mathrm{(D,D),C}}^{t_0} < rac{r_{\mathrm{CC}}}{1-\gamma} rac{r_{\mathrm{CC}}-r_{\mathrm{DD}}}{1-\gamma^2} < Q_{\mathrm{(C,C),C}}^{t_0}$
- $ullet Q_{(\mathrm{C,C}),\mathrm{C}}^{t_0} < rac{r_{\mathrm{CC}}}{1-\gamma}$

Evolution of the *Q*-values as a function of the number of iterations. Agents move from the *always defect* policy to the *cooperative Pavlov* policy.

Theorem 1: Fully Greedy Q-learning

Suppose the initial policy is always defect and the initial state s_0 is defect defect: $s_0 = \mathrm{DD}$. Under the optimistic Q-values initialization, Q-learning guided agents move away from the always defect policy and learn the cooperative Pavlov policy.

Theorem 2: ϵ -greedy case with $\epsilon > 0$

Suppose the initial policy is always defect and the initial state s_0 is defect defect: $s_0 = \mathrm{DD}$. Under the optimistic Q-values initialization, Q-learning guided agents move away from the *always defect* policy and learn the *cooperative Pavlov policy* with high probability.

Experimental Results

Evolution of the Q-values as a function of the number of iterations. The larger the exploration parameter ϵ , the smaller the number of trajectories yielding cooperation.

Extension to deep Q-learning:

References

E. Calvano, G. Calzolari, V. Denicolo, and S. Pastorello. Artificial intelligence, algorithmic pricing, and collusion. *American Economic Review*, 2020.

J. Z. Leibo, V. Zambaldi, M. Lanctot, J. Marecki, and T. Graepel. Multi-agent reinforcement learning in sequential social dilemmas. *Conference on Autonomous Agents and Multiagent System*, 2017.

M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat, D. Silver, and . Graepel. A

unified game-theoretic approach to multiagent reinforcement learning. NeurIPS, 2017.