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Motivation: Algorithmic Pricing and Collusion
• Algorithmic pricing has supplanted manual pricing
↪→ ≈ 1/2 of Amazon’s largest third-party sellers
• Academic and institutional concerns over tacit collusion
↪→ OECD, Competition Bureau Canada

Question: Could pricing algorithms autonomously
learn to cooperate, thereby leading to higher prices?

Contributions:
• For optimistic enough Q-values, self-play Q-learning guided agents learn
a cooperative policy

• Extend the latter result for ϵ > 0-greedy Q-learning guided agents
• Empirically demonstrated the convergence to a cooperative policy

Problem Setting:
• Iterated Prisoner’s Dilemma
↪→ rDC > rCC > rDD > rCD and 2rCC > rCD + rDC

Cooperate Defect

Cooperate rCC
rCC rCD

rDC

Defect rDC
rCD rDD

rDD

• Multi-agent Q-Learning

Q⋆
st,a1t

= Ea2t∼π2(·|st)
(
r 1a1t ,a2t + γmax

a
Q⋆
(a1t ,a

2
t ),a

)
.

Q t+1
st,a1t

= Q t
st,a1t

+ α

(
r 1a1t ,a2t + γmax

a′
Q t
(a1t ,a

2
t ),a′

− Q t
st,a1t

)
• Self-play
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• Epsilon greedy
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Theoretical Results
Challenges:
• Multiple fixed-point policies
• Show convergence toward a specific policy

Assumptions: Optimistic enough Q-values
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Evolution of the Q-values as a function of the number of iterations.
Agents move from the always defect policy to the cooperative Pavlov
policy.

Theorem 1: Fully Greedy Q-learning

Suppose the initial policy is always defect and the initial state s0 is defect
defect: s0 = DD. Under the optimistic Q-values initialization, Q-
learning guided agents move away from the always defect policy and learn
the cooperative Pavlov policy.
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Theorem 2: ϵ-greedy case with ϵ > 0

Suppose the initial policy is always defect and the initial state s0 is defect
defect: s0 = DD. Under the optimistic Q-values initialization, Q-
learning guided agents move away from the always defect policy and learn
the cooperative Pavlov policy with high probability.

Experimental Results

s = (D,D) s = (C,C) s = (D,C)

0 1 2
# iterations ×103

0.0

0.5

Q
s,

C
−
Q
s,

D

ε = 0.01

0 1 2
# iterations ×103

ε = 0.05

0 1 2
# iterations ×103

ε = 0.10

Evolution of the Q-values as a function of the number of iterations.
The larger the exploration parameter ϵ, the smaller the number of
trajectories yielding cooperation.

Extension to deep Q-learning:
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