Validating Mechanistic Interpretations: An Axiomatic Approach

Nils Palumbo, Ravi Mangal, Zifan Wang, Saranya Vijayakumar, Corina Păsăreanu, Somesh Jha

Mechanistic Interpretations: Extracting a Circuit

Mechanistic Interpretations: Candidate Interpretation

Concrete and Abstract Models

Abstraction and Concretization

Validating Equivalence of Models

Equivalence up to Interleaving

Equivalence up to Interleaving

Interleaving the Concrete and Abstract Models

Handling Type Mismatch with Abstraction and Concretization

See More in the Paper!

- An axiomatic definition of a valid mechanistic interpretation
 - Characterized by invariance to interleaving
- We validate our approach with two case studies using our evaluation framework
 - A detailed original analysis of a model trained to solve the 2-SAT problem:
 - The model implements a simple parser followed by an *approximate brute-force evaluation*
 - Evaluating a well-known mechanistic interpretation:
 - A model trained to perform modular addition (Nanda et al., 2023)