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Introduction

• Reinforcement Learning from Human Feedback (RLHF) enables
agents to align with human goals using human preferences.

• Existing RLHF methods often assume as if trajectories are
generated by optimal policies π∗.

• This leads to likelihood mismatch in offline settings due to
environmental stochasticity and diverse behavior policies.

• Direct Preference Optimization (DPO) removes the need for
explicit rewards, but fails to address this mismatch.
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Our Contributions

1 We propose Policy-labeled Preference Learning (PPL), a
regret-based framework for RLHF, which explicitly models the
behavior policy associated with preference data.

2 We introduce contrastive KL regularization to correct for
likelihood mismatch.

3 PPL shows superior performance on MetaWorld offline tasks and
is competitive in online RLHF.
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Score-based Preference Model

Model prediction: PSψ [ζ
+ ≻ ζ−] = σ

(∑
t≥0

Sψ(s+
t ,a+

t )− Sψ(s−
t ,a−

t )
)
,

Loss function: L(Sψ;D) = −E(ζ+,ζ−)∼D

[
logPSψ [ζ

+ ≻ ζ−]
]
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Reward vs Regret

• Reward : Sparse and delayed feedback

• Negative Regret : Dense and stepwise feedback
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Reward vs Regret

Negative Regret
• Performance difference between the behavior policy π and the

optimal policy π∗

• −Regππ∗(s,a) = Qπ(s,a)− Vπ∗
(s)
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Likelihood Mismatch

From a perspective of regret, existing RLHF/DPO disregards the
source of the trajectories, implicitly treating all trajectories as if they
were generated by the optimal policy.

“What impact does this assumption – treating all behavior polices as
optimal – have on the regret-based learning process?”
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Likelihood Mismatch

Ground-Truth MDP Estimated MDP 
without policy label

• Offline data from π is misinterpreted as from π∗.
• Leads to erroneous preference modeling and degraded

performance.
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Policy-labeled Preference Learning

Likelihood
matched

Policy-labeled Preference Learning

Policy-labeled 
Dataset

Contrastive KL
Regularization

• Prior works like CPL use optimal advantage Qπ∗
(s,a)− Vπ∗

(s) as
preference score.

• But this assumes all data comes from π∗, ignoring suboptimal
behavior policies.

• PPL instead uses negative regret: Qπ(s,a)− Vπ∗
(s), which

incorporates behavior policy.
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Sequential Forward KL Divergence

Theorem (Policy Deviation Theorem)
If a policy π∗ is α-optimal, then for any policy π,

Qπ∗
∗ (s,a)− Qπ

∗ (s,a) = αD̄KL(π||π∗; s,a)

where the sequential forward KL divergence is defined as

D̄KL(π||π′; s,a) := Eτ∼Pπs,a

[∑
l>0

γ lDKL(π(·|sl)||π′(·|sl))

]
.

Here, Pπs,a is the distribution of trajectories τ = (s0,a0, · · · , sl ,al , · · · )
generated by policy π and the transition P, starting at (s0,a0) = (s,a).
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Sequential Forward KL Divergence

Now we can derive the (negative) regret into policy expression,

−Regππ∗(st ,at) := − Vπ∗
(st)︸ ︷︷ ︸

expected return under π∗

+ Qπ(st ,at)︸ ︷︷ ︸
achieved return under π

= α
(

log π∗(at |st)︸ ︷︷ ︸
increase likelihood

− D̄KL
(
π||π∗; st ,at

)︸ ︷︷ ︸
decrease sequential forward KL

)
.
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Policy-labeled Preference Learning

LPPL(πψ;D) = −ED

[
log σ

(
−
∑
t≥0

Regπ
+

πψ
(s+

t ,a+
t )− Regπ

−

πψ
(s−

t ,a−
t )

)]

Substitute −Regππ∗(st ,at) = α
(
log π∗(at |st)− D̄KL

(
π||π∗; st ,at

))

−
∑
t≥0

Regπ
+

πψ
(s+

t ,a+
t )− Regπ

−

πψ
(s−

t ,a−
t )

= α
∑
t≥0

(
log

πψ(a+
t |s

+
t )

πψ(a−
t |s

−
t )

−D̄KL(π
+||πψ; s+

t ,a+
t ) + D̄KL(π

−||πψ; s−
t ,a−

t )︸ ︷︷ ︸
contrastive KL regularization R(πψ ; π+,π−)

)
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Policy-labeled Preference Learning

Contrastive KL Regularization

R(πψ;π
+, π−) := −D̄KL(π

+||πψ; s+
t ,a+

t ) + D̄KL(π
−||πψ; s−

t ,a−
t )

≈ 1
L

L∑
l=1

[
log

π+(a+
t+l |s

+
t+l)

πψ(a+
t+l |s

+
t+l)

− log
π−(a−

t+l |s
−
t+l)

πψ(a−
t+l |s

−
t+l)

]

• Encourages πψ to align with preferred policy π+ and diverge from
less preferred π−.

• Approximates into L-horizon undiscounted sum with sampled
segments {s+

t ,a+
t } ∼ ζ+ and {s−

t ,a−
t } ∼ ζ−

• Mitigates likelihood mismatch over sequential rollouts.
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Policy-labeled Preference Learning

Deterministic Pseudo Labeling

SPPL-d(πψ; ζ
+)− SPPL-d(πψ; ζ

−) =∑
t≥0

[
log

πψ(a+
t | s+

t )

πψ(a−
t | s−

t )
+

1
L

L∑
l=1

log
πψ(a+

t+l | s+
t+l)

πψ(a−
t+l | s−

t+l)

]

• Behavior policy is typically unknown in offline setting.
• Assign a pseudo label as if each segment is generated by

deterministic policy.
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Experiments

• 1. Is PPL robust when learning from heterogeneous datasets that
include suboptimal data?

• 2. Does incorporating policy labels lead to improved performance?
• 3. Can PPL be applied effectively in an online setting?
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Offline MetaWorld Results

• PPL outperforms CPL and P-IQL especially in sparse and
heterogeneous settings.

• Robust across 6 MetaWorld tasks.
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Ablation on Policy Labels

• Deterministic pseudo-labels perform worse in heterogeneous
data.

• Shows benefit of incorporating true or approximated behavior
policies.
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Online RLHF Setting

• PPL can be directly applied to online setting.
• Achieves competitive performance with 1/10 of PEBBLE’s

parameters.
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Conclusion

• PPL resolves likelihood mismatch by modeling regret w.r.t.
behavior policies.

• Theoretical foundations show regret minimization ⇔ forward KL.
• Contrastive KL regularization provides robustness across offline

and online RLHF.
• PPL is sample-efficient and scalable for real-world RLHF tasks.

Cho et al. Policy-labeled Preference Learning 18 / 21



Thank you!
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