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Low-Precision LLM Training
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• Training LLMs is resource intensive, using FP8 promises significant efficiency gains 
• Existing low-precision training schemes have various drawbacks 
• Our method, µnit Scaling (µS), combines full FP8 training with hparam transfer in a 

simple, straightforward, and scalable way



The µS training scheme
Maximal Update 

Parametrization (µP) Unit Scaling



Poor numerics in Transformers: Self-attention

• Causal self-attention is not variance preserving, 
making low-precision training difficult 

• Masking of attention logits matrix leads to output 
variance inversely proportional to a token’s 
sequence position 

• Simply taking square-root of logits also insufficient 
due to repeated / highly correlated value tokens in 
sequence data  

• Proposed solution: Use Res-Post-LayerNorm6 to 
normalize variance of attention outputs

[6] Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong, L., et al. Swin transformer v2: Scaling up capacity and resolution. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12009–12019, 2022.



Hyperparameter Transfer of both  and η λ
• Both learning rate ( ) and weight decay ( ) are important 

for optimal LLM training 

• µS demonstrates consistent hparam transfer of  and  by 
combining Unit Scaling3 with the Maximal Update 
Parametrization (µP)2, as similarly shown in u-µP4 

• µS requires tuning much fewer hparams than µP and u-µP 

• Hparam  makes the residual connection variance-
preserving:

η λ

η λ

τ



Large-scale LLM training in FP8

• µS models successfully train in FP8 up to 13B scale 
• All transformer backbone matmuls done in FP8 

• µS FP8 models converge similarly to BF16 counterparts 
• SP 13B model in FP8 (with TransformerEngine) failed to converge 
• µS provides state-of-the-art training efficiency. 

• Elimination of dynamic scaling overhead makes it faster than TE
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