

Paper Co

TIMING: Temporality-Aware Integrated Gradients for Time Series Explanation

ICML 2025 Spotlight (313/12107=2.6%)

Hyeongwon Jang^{1*} Changhun Kim^{1,2*} Eunho Yang^{1,2}

¹KAIST ²AITRICS *Equal Contribution

Key Contributions

 We propose CPD and CPP to monitor all internal changes and resolve the cancel out problem in time series XAI evaluations.

• We introduce **TIMING**, which improves **IG** using **temporality-aware stochastic baselines** to handle temporal dependencies and OOD issues.

Aligned IG achieves SOTA under existing metrics! (e.g. Accuracy)

Table 1: Preliminary evaluation of XAI methods and evaluation metrics for MIMIC-III mortality prediction, comparing the accuracy and cumulative preservation difference.

Method	Acc (10%) ↓	$\mathrm{CPD}(K=50)\uparrow$
Extrmask ContraLSP TimeX++	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$0.204 \pm 0.007 \ 0.013 \pm 0.001 \ 0.027 \pm 0.002$
IG (Unsigned)	0.974 ± 0.001	0.027 ± 0.002 0.342 ± 0.021 0.248 ± 0.010
IG (Signed) TIMING	0.855 ± 0.011 0.975 ± 0.001	0.248±0.010 0.366±0.021

Problem of Current Evaluation Metrics

 Cancel out problem occurs when multiple important points are removed simultaneously.

(a) Correctly ranked attributions with unaligned signs.

(c) Existing raw prediction difference.

(b) Poorly ranked attributions with aligned signs.

(d) Proposed cumulative prediction difference.

Proposed Evaluation Metrics: CPD and CPP

r Cod

- Cumulative Prediction Difference (CPD)
 - x_k^{\uparrow} : input after removing top-k highest attribution points

$$CPD(x) = \sum_{k=0}^{K-1} \|F(x_k^{\uparrow}) - F(x_{k+1}^{\uparrow})\|_1$$

- Cumulative Prediction Preservation (CPP)
 - x_k^{\downarrow} : input after removing top-k lowest attribution points

$$CPP(x) = \sum_{k=0}^{K-1} \|F(x_k^{\downarrow}) - F(x_{k+1}^{\downarrow})\|_{1}$$

IG Works Well–But Not Optimally

- **Integrated Gradients (IG)** uses linear interpolation from baseline; intermediate points can be **out-of-distribution** (**OOD**).
- IG also fails to detect **disruption of temporal dependencies**—merely scales the input.

Image Source: Rahnfeld, Jens, et al. "A Comparative Study of Explainability Methods for Whole Slide Classification of Lymph Node Metastases using Vision Transformers." PLOS Digital Health, 2025.

TIMING: Temporality-Aware Integrated Gradients

- TIMING: Aggregate IG with multiple times with segment-based masking.
 - Get baseline x' more closely to x.
 - Observe how F(x) changes when certain temporal relationships are disrupted.

$$\text{TIMING}_{t,d}(x;n,s_{min},s_{max}) = \mathbb{E}_{M \sim G(n,s_{min},s_{max})} \left[\text{MaskingIG}_{t,d}(x,M) \, \middle| \, M_{t,d} = 1 \right]$$

TIMING: Temporality-Aware Integrated Gradients

Proposition 4.1 (Effectiveness). Let $x, x' \in \mathbb{R}^{T \times D}$ be any input and baseline, and let $M \in \{0,1\}^{T \times D}$ be a binary mask. Define the retained baseline combined with the input as:

$$\tilde{x}(M) = (\mathbf{1} - M) \odot x + M \odot x',$$

and consider the intermediate point in the path from $\tilde{x}(M)$ to x:

$$z(\alpha; M) = \tilde{x}(M) + \alpha(x - \tilde{x}(M)), \quad \alpha \in [0, 1].$$

Suppose the partial derivatives of the model output $F_{\hat{y}}$ are bounded along all of these paths. Then

$$\int_0^1 \left| \frac{\partial F_{\hat{y}}(z(\alpha; M))}{\partial x_{t,d}} \right| d\alpha < \infty, \quad \forall \alpha \in [0, 1], \ t, d, M.$$

Especially if x' = 0 and M follows some probability distribution,

$$\mathbb{E}_{M}\left[\textit{MaskingIG}_{t,d}(x,M) \,\middle|\, M_{t,d} = 1\right] = x_{t,d} \times \int_{\alpha=0}^{1} \mathbb{E}_{M}\left[\frac{\partial F_{\hat{y}}(z(\alpha;M))}{\partial x_{t,d}} \,\middle|\, M_{t,d} = 1\right] \ d\alpha$$

Results of Proposition 4.1

• By Proposition 4.1 (Effectiveness), TIMING can calculate in the only one IG path.

$$\mathbb{E}_{M}\left[\textit{MaskingIG}_{t,d}(x,M) \,\middle|\, M_{t,d} = 1\right] = x_{t,d} \times \int_{\alpha=0}^{1} \mathbb{E}_{M}\left[\frac{\partial F_{\hat{y}}(z(\alpha;M))}{\partial x_{t,d}} \,\middle|\, M_{t,d} = 1\right] \ d\alpha$$

Experiments

• Cumulative Prediction Difference (CPD) on MIMIC-III

	- -	= -	-		_	_
	Cumulati	20% Masking				
Method	$CPD(K=50)\uparrow$	$\mathrm{CPD}(K=100)\!\uparrow$	Acc ↓	CE ↑	Suff * $10^2 \downarrow$	$Comp * 10^2 \uparrow$
FO	0.016±0.002	0.034 ± 0.004	0.991±0.001	0.101 ± 0.006	1.616±0.531	-0.258±0.180
AFO	0.120 ± 0.008	0.177 ± 0.013	0.975 ± 0.002	0.121 ± 0.007	1.484 ± 0.306	-0.698 ± 0.257
GradSHAP	0.327 ± 0.021	0.447 ± 0.030	0.975 ± 0.002	$0.136{\scriptstyle\pm0.008}$	0.253 ± 0.217	0.570 ± 0.536
DeepLIFT	0.142 ± 0.010	0.189 ± 0.014	0.974 ± 0.002	0.374 ± 0.005	$0.325 {\pm} 0.076$	-0.001 ± 0.176
LIME	0.071 ± 0.004	0.087 ± 0.005	0.988 ± 0.001	0.103 ± 0.008	-1.875 ± 0.081	-0.259 ± 0.257
FIT	0.015 ± 0.001	0.032 ± 0.002	0.991 ± 0.001	0.103 ± 0.006	1.620 ± 0.686	0.008 ± 0.119
WinIT	0.020 ± 0.001	$0.038 {\pm} 0.002$	0.989 ± 0.001	$0.106{\scriptstyle\pm0.006}$	$1.261{\scriptstyle\pm0.658}$	0.250 ± 0.147
Dynamask	0.052 ± 0.002	0.079 ± 0.004	0.974 ± 0.002	0.131 ± 0.008	0.081 ± 0.374	1.626 ± 0.218
Extrmask	0.204 ± 0.007	0.281 ± 0.009	0.932 ± 0.005	$0.485 {\pm 0.022}$	-8.434 ± 0.382	$23.370 {\pm} 1.088$
ContraLSP	0.013 ± 0.001	$0.028 {\pm} 0.002$	0.921 ± 0.006	$0.301{\scriptstyle\pm0.013}$	-7.114 ± 0.306	12.690 ± 0.998
TimeX	0.064 ± 0.007	0.101 ± 0.009	0.974 ± 0.002	0.117 ± 0.003	$\overline{3.810\pm0.560}$	$\overline{-1.701\pm0.166}$
TimeX++	0.027 ± 0.002	0.051 ± 0.004	0.987 ± 0.001	$0.095{\scriptstyle\pm0.005}$	$1.885{\scriptstyle\pm0.328}$	-0.936 ± 0.127
IG	0.342 ± 0.021	0.469 ± 0.030	0.974±0.001	0.132 ± 0.008	0.403 ± 0.156	0.118±0.561
TIMING	$\overline{0.366 \pm 0.021}$	$\overline{0.505}\pm 0.029$	0.975 ± 0.002	$0.136{\scriptstyle\pm0.008}$	0.242 ± 0.136	$0.436{\scriptstyle\pm0.562}$

Cumulative Prediction Difference (CPD) across diverse real-world datasets

	MIM	IC-III	PA	M	Bo	iler	Epil	epsy	Wa	ıfer	Fre	ezer
Method	Avg.	Zero	Avg.	Zero	Avg.	Zero	Avg.	Zero	Avg.	Zero	Avg.	Zero
AFO	0.127±0.009	0.227 ± 0.017	0.140±0.009	0.200 ± 0.013	0.262±0.020	0.349 ± 0.035	0.028±0.003	0.030 ± 0.004	0.018±0.003	0.018 ± 0.003	0.143±0.054	0.143±0.054
GradSHAP	0.250±0.015	0.522 ± 0.038	0.421±0.014	0.518 ± 0.012	0.752±0.055	0.747 ± 0.092	0.052 ± 0.004	0.054 ± 0.004	0.485 ± 0.014	0.485 ± 0.014	0.397±0.110	0.397 ± 0.110
Extrmask	0.154±0.008	0.305 ± 0.010	0.291±0.007	0.380 ± 0.009	0.338±0.028	0.400 ± 0.031	0.028 ± 0.003	0.029 ± 0.003	0.202 ± 0.026	0.202 ± 0.026	0.176 ± 0.057	0.176 ± 0.057
ContraLSP	0.048±0.003	0.051 ± 0.004	0.046±0.007	0.059 ± 0.011	0.408±0.035	0.496 ± 0.043	0.016±0.001	0.016 ± 0.001	0.121 ± 0.032	0.121 ± 0.032	0.176 ± 0.055	0.176 ± 0.055
TimeX++	0.017±0.002	$0.074 {\pm} 0.006$	0.057±0.004	$0.070{\scriptstyle\pm0.004}$	0.124±0.028	$0.208{\scriptstyle\pm0.043}$	0.030 ± 0.004	$0.032{\scriptstyle\pm0.004}$	0.000 ± 0.000	$0.000{\scriptstyle\pm0.000}$	0.216 ± 0.056	$0.216{\scriptstyle\pm0.056}$
IG			0.448±0.013									
TIMING	0.250±0.015	0.597 ± 0.037	0.463±0.007	$0.602 {\pm} 0.033$	1.259 ± 0.065	1.578 ± 0.085	0.057 ± 0.005	$0.060{\scriptstyle\pm0.005}$	0.674 ± 0.014	$\textbf{0.674} {\scriptstyle \pm 0.014}$	0.409±0.109	0.409 ± 0.109

Cumulative Prediction Preservation (CPP) on MIMIC-III

(a) CPP with 20% masking and zero substitution.

(b) CPP with 40% masking and zero substitution.

Experiments

Ablation Study

Method	Avg.	Zero
IG	0.172 ± 0.011	0.342 ± 0.021
RandIG ($p = 0.3$)	0.175 ± 0.011	$0.350{\scriptstyle\pm0.022}$
RandIG ($p = 0.5$)	0.175 ± 0.011	$0.353{\scriptstyle\pm0.022}$
RandIG ($p = 0.7$)	0.174 ± 0.011	$\underline{0.354 {\pm} 0.022}$
TIMING	0.177±0.011	0.366±0.021

Hyperparameter Sensitivity

(n,s_{min},s_{max})	Avg.	Zero
(10, 1, 10)	0.173 ± 0.011	$0.345{\scriptstyle\pm0.021}$
(10, 1, 48)	0.175 ± 0.011	$0.354{\scriptstyle\pm0.021}$
(10, 10, 10)	0.173 ± 0.011	$0.347{\scriptstyle\pm0.021}$
(10, 10, 48)	$\underline{0.176 \scriptstyle{\pm 0.011}}$	$0.356 {\pm} 0.021$
(100, 1, 10)	0.175±0.011	0.354 ± 0.021
(100, 1, 48)	0.176 ± 0.011	$0.365{\scriptstyle\pm0.021}$
(100, 10, 10)	0.175 ± 0.011	$0.358{\scriptstyle\pm0.021}$
(100, 10, 48)	0.174 ± 0.011	$0.363{\scriptstyle\pm0.021}$
(50, 1, 10)	0.174±0.011	0.351 ± 0.021
(50, 1, 48)	0.177 ± 0.011	$\underline{0.365{\scriptstyle\pm0.021}}$
(50, 10, 10)	0.175 ± 0.011	$0.355{\scriptstyle\pm0.021}$
TIMING (50, 10, 48)	0.177 ±0.011	$\textbf{0.366} {\pm} 0.021$

Computational Efficiency

Code

