Paper Co # TIMING: Temporality-Aware Integrated Gradients for Time Series Explanation ICML 2025 Spotlight (313/12107=2.6%) Hyeongwon Jang^{1*} Changhun Kim^{1,2*} Eunho Yang^{1,2} ¹KAIST ²AITRICS *Equal Contribution ## **Key Contributions** We propose CPD and CPP to monitor all internal changes and resolve the cancel out problem in time series XAI evaluations. • We introduce **TIMING**, which improves **IG** using **temporality-aware stochastic baselines** to handle temporal dependencies and OOD issues. Aligned IG achieves SOTA under existing metrics! (e.g. Accuracy) **Table 1:** Preliminary evaluation of XAI methods and evaluation metrics for MIMIC-III mortality prediction, comparing the accuracy and cumulative preservation difference. | Method | Acc (10%) ↓ | $\mathrm{CPD}(K=50)\uparrow$ | |----------------------------|--|---| | Extrmask ContraLSP TimeX++ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ | $0.204 \pm 0.007 \ 0.013 \pm 0.001 \ 0.027 \pm 0.002$ | | IG (Unsigned) | 0.974 ± 0.001 | 0.027 ± 0.002 0.342 ± 0.021 0.248 ± 0.010 | | IG (Signed) TIMING | 0.855 ± 0.011 0.975 ± 0.001 | 0.248±0.010
0.366±0.021 | #### **Problem of Current Evaluation Metrics** Cancel out problem occurs when multiple important points are removed simultaneously. (a) Correctly ranked attributions with unaligned signs. (c) Existing raw prediction difference. **(b)** Poorly ranked attributions with aligned signs. (d) Proposed cumulative prediction difference. ## **Proposed Evaluation Metrics: CPD and CPP** r Cod - Cumulative Prediction Difference (CPD) - x_k^{\uparrow} : input after removing top-k highest attribution points $$CPD(x) = \sum_{k=0}^{K-1} \|F(x_k^{\uparrow}) - F(x_{k+1}^{\uparrow})\|_1$$ - Cumulative Prediction Preservation (CPP) - x_k^{\downarrow} : input after removing top-k lowest attribution points $$CPP(x) = \sum_{k=0}^{K-1} \|F(x_k^{\downarrow}) - F(x_{k+1}^{\downarrow})\|_{1}$$ ## **IG Works Well–But Not Optimally** - **Integrated Gradients (IG)** uses linear interpolation from baseline; intermediate points can be **out-of-distribution** (**OOD**). - IG also fails to detect **disruption of temporal dependencies**—merely scales the input. Image Source: Rahnfeld, Jens, et al. "A Comparative Study of Explainability Methods for Whole Slide Classification of Lymph Node Metastases using Vision Transformers." PLOS Digital Health, 2025. # **TIMING: Temporality-Aware Integrated Gradients** - TIMING: Aggregate IG with multiple times with segment-based masking. - Get baseline x' more closely to x. - Observe how F(x) changes when certain temporal relationships are disrupted. $$\text{TIMING}_{t,d}(x;n,s_{min},s_{max}) = \mathbb{E}_{M \sim G(n,s_{min},s_{max})} \left[\text{MaskingIG}_{t,d}(x,M) \, \middle| \, M_{t,d} = 1 \right]$$ ## **TIMING: Temporality-Aware Integrated Gradients** **Proposition 4.1** (Effectiveness). Let $x, x' \in \mathbb{R}^{T \times D}$ be any input and baseline, and let $M \in \{0,1\}^{T \times D}$ be a binary mask. Define the retained baseline combined with the input as: $$\tilde{x}(M) = (\mathbf{1} - M) \odot x + M \odot x',$$ and consider the intermediate point in the path from $\tilde{x}(M)$ to x: $$z(\alpha; M) = \tilde{x}(M) + \alpha(x - \tilde{x}(M)), \quad \alpha \in [0, 1].$$ Suppose the partial derivatives of the model output $F_{\hat{y}}$ are bounded along all of these paths. Then $$\int_0^1 \left| \frac{\partial F_{\hat{y}}(z(\alpha; M))}{\partial x_{t,d}} \right| d\alpha < \infty, \quad \forall \alpha \in [0, 1], \ t, d, M.$$ Especially if x' = 0 and M follows some probability distribution, $$\mathbb{E}_{M}\left[\textit{MaskingIG}_{t,d}(x,M) \,\middle|\, M_{t,d} = 1\right] = x_{t,d} \times \int_{\alpha=0}^{1} \mathbb{E}_{M}\left[\frac{\partial F_{\hat{y}}(z(\alpha;M))}{\partial x_{t,d}} \,\middle|\, M_{t,d} = 1\right] \ d\alpha$$ #### Results of Proposition 4.1 • By Proposition 4.1 (Effectiveness), TIMING can calculate in the only one IG path. $$\mathbb{E}_{M}\left[\textit{MaskingIG}_{t,d}(x,M) \,\middle|\, M_{t,d} = 1\right] = x_{t,d} \times \int_{\alpha=0}^{1} \mathbb{E}_{M}\left[\frac{\partial F_{\hat{y}}(z(\alpha;M))}{\partial x_{t,d}} \,\middle|\, M_{t,d} = 1\right] \ d\alpha$$ ## **Experiments** • Cumulative Prediction Difference (CPD) on MIMIC-III | | -
- | = - | - | | _ | _ | |-----------------|------------------------------|---------------------------------|-------------------|-------------------------------|-------------------------------|-------------------------------| | | Cumulati | 20% Masking | | | | | | Method | $CPD(K=50)\uparrow$ | $\mathrm{CPD}(K=100)\!\uparrow$ | Acc ↓ | CE ↑ | Suff * $10^2 \downarrow$ | $Comp * 10^2 \uparrow$ | | FO | 0.016±0.002 | 0.034 ± 0.004 | 0.991±0.001 | 0.101 ± 0.006 | 1.616±0.531 | -0.258±0.180 | | AFO | 0.120 ± 0.008 | 0.177 ± 0.013 | 0.975 ± 0.002 | 0.121 ± 0.007 | 1.484 ± 0.306 | -0.698 ± 0.257 | | GradSHAP | 0.327 ± 0.021 | 0.447 ± 0.030 | 0.975 ± 0.002 | $0.136{\scriptstyle\pm0.008}$ | 0.253 ± 0.217 | 0.570 ± 0.536 | | DeepLIFT | 0.142 ± 0.010 | 0.189 ± 0.014 | 0.974 ± 0.002 | 0.374 ± 0.005 | $0.325 {\pm} 0.076$ | -0.001 ± 0.176 | | LIME | 0.071 ± 0.004 | 0.087 ± 0.005 | 0.988 ± 0.001 | 0.103 ± 0.008 | -1.875 ± 0.081 | -0.259 ± 0.257 | | FIT | 0.015 ± 0.001 | 0.032 ± 0.002 | 0.991 ± 0.001 | 0.103 ± 0.006 | 1.620 ± 0.686 | 0.008 ± 0.119 | | WinIT | 0.020 ± 0.001 | $0.038 {\pm} 0.002$ | 0.989 ± 0.001 | $0.106{\scriptstyle\pm0.006}$ | $1.261{\scriptstyle\pm0.658}$ | 0.250 ± 0.147 | | Dynamask | 0.052 ± 0.002 | 0.079 ± 0.004 | 0.974 ± 0.002 | 0.131 ± 0.008 | 0.081 ± 0.374 | 1.626 ± 0.218 | | Extrmask | 0.204 ± 0.007 | 0.281 ± 0.009 | 0.932 ± 0.005 | $0.485 {\pm 0.022}$ | -8.434 ± 0.382 | $23.370 {\pm} 1.088$ | | ContraLSP | 0.013 ± 0.001 | $0.028 {\pm} 0.002$ | 0.921 ± 0.006 | $0.301{\scriptstyle\pm0.013}$ | -7.114 ± 0.306 | 12.690 ± 0.998 | | TimeX | 0.064 ± 0.007 | 0.101 ± 0.009 | 0.974 ± 0.002 | 0.117 ± 0.003 | $\overline{3.810\pm0.560}$ | $\overline{-1.701\pm0.166}$ | | TimeX++ | 0.027 ± 0.002 | 0.051 ± 0.004 | 0.987 ± 0.001 | $0.095{\scriptstyle\pm0.005}$ | $1.885{\scriptstyle\pm0.328}$ | -0.936 ± 0.127 | | IG | 0.342 ± 0.021 | 0.469 ± 0.030 | 0.974±0.001 | 0.132 ± 0.008 | 0.403 ± 0.156 | 0.118±0.561 | | TIMING | $\overline{0.366 \pm 0.021}$ | $\overline{0.505}\pm 0.029$ | 0.975 ± 0.002 | $0.136{\scriptstyle\pm0.008}$ | 0.242 ± 0.136 | $0.436{\scriptstyle\pm0.562}$ | #### Cumulative Prediction Difference (CPD) across diverse real-world datasets | | MIM | IC-III | PA | M | Bo | iler | Epil | epsy | Wa | ıfer | Fre | ezer | |-----------|-------------|---------------------|-------------|-------------------------------|-------------------|-------------------------------|-------------------|-------------------------------|-------------------|---|-------------------|-------------------------------| | Method | Avg. | Zero | | AFO | 0.127±0.009 | 0.227 ± 0.017 | 0.140±0.009 | 0.200 ± 0.013 | 0.262±0.020 | 0.349 ± 0.035 | 0.028±0.003 | 0.030 ± 0.004 | 0.018±0.003 | 0.018 ± 0.003 | 0.143±0.054 | 0.143±0.054 | | GradSHAP | 0.250±0.015 | 0.522 ± 0.038 | 0.421±0.014 | 0.518 ± 0.012 | 0.752±0.055 | 0.747 ± 0.092 | 0.052 ± 0.004 | 0.054 ± 0.004 | 0.485 ± 0.014 | 0.485 ± 0.014 | 0.397±0.110 | 0.397 ± 0.110 | | Extrmask | 0.154±0.008 | 0.305 ± 0.010 | 0.291±0.007 | 0.380 ± 0.009 | 0.338±0.028 | 0.400 ± 0.031 | 0.028 ± 0.003 | 0.029 ± 0.003 | 0.202 ± 0.026 | 0.202 ± 0.026 | 0.176 ± 0.057 | 0.176 ± 0.057 | | ContraLSP | 0.048±0.003 | 0.051 ± 0.004 | 0.046±0.007 | 0.059 ± 0.011 | 0.408±0.035 | 0.496 ± 0.043 | 0.016±0.001 | 0.016 ± 0.001 | 0.121 ± 0.032 | 0.121 ± 0.032 | 0.176 ± 0.055 | 0.176 ± 0.055 | | TimeX++ | 0.017±0.002 | $0.074 {\pm} 0.006$ | 0.057±0.004 | $0.070{\scriptstyle\pm0.004}$ | 0.124±0.028 | $0.208{\scriptstyle\pm0.043}$ | 0.030 ± 0.004 | $0.032{\scriptstyle\pm0.004}$ | 0.000 ± 0.000 | $0.000{\scriptstyle\pm0.000}$ | 0.216 ± 0.056 | $0.216{\scriptstyle\pm0.056}$ | | IG | | | 0.448±0.013 | | | | | | | | | | | TIMING | 0.250±0.015 | 0.597 ± 0.037 | 0.463±0.007 | $0.602 {\pm} 0.033$ | 1.259 ± 0.065 | 1.578 ± 0.085 | 0.057 ± 0.005 | $0.060{\scriptstyle\pm0.005}$ | 0.674 ± 0.014 | $\textbf{0.674} {\scriptstyle \pm 0.014}$ | 0.409±0.109 | 0.409 ± 0.109 | ## Cumulative Prediction Preservation (CPP) on MIMIC-III (a) CPP with 20% masking and zero substitution. (b) CPP with 40% masking and zero substitution. ## **Experiments** #### Ablation Study | Method | Avg. | Zero | |----------------------|-------------------|---------------------------------| | IG | 0.172 ± 0.011 | 0.342 ± 0.021 | | RandIG ($p = 0.3$) | 0.175 ± 0.011 | $0.350{\scriptstyle\pm0.022}$ | | RandIG ($p = 0.5$) | 0.175 ± 0.011 | $0.353{\scriptstyle\pm0.022}$ | | RandIG ($p = 0.7$) | 0.174 ± 0.011 | $\underline{0.354 {\pm} 0.022}$ | | TIMING | 0.177±0.011 | 0.366±0.021 | ## Hyperparameter Sensitivity | (n,s_{min},s_{max}) | Avg. | Zero | |-----------------------|---|---| | (10, 1, 10) | 0.173 ± 0.011 | $0.345{\scriptstyle\pm0.021}$ | | (10, 1, 48) | 0.175 ± 0.011 | $0.354{\scriptstyle\pm0.021}$ | | (10, 10, 10) | 0.173 ± 0.011 | $0.347{\scriptstyle\pm0.021}$ | | (10, 10, 48) | $\underline{0.176 \scriptstyle{\pm 0.011}}$ | $0.356 {\pm} 0.021$ | | (100, 1, 10) | 0.175±0.011 | 0.354 ± 0.021 | | (100, 1, 48) | 0.176 ± 0.011 | $0.365{\scriptstyle\pm0.021}$ | | (100, 10, 10) | 0.175 ± 0.011 | $0.358{\scriptstyle\pm0.021}$ | | (100, 10, 48) | 0.174 ± 0.011 | $0.363{\scriptstyle\pm0.021}$ | | (50, 1, 10) | 0.174±0.011 | 0.351 ± 0.021 | | (50, 1, 48) | 0.177 ± 0.011 | $\underline{0.365{\scriptstyle\pm0.021}}$ | | (50, 10, 10) | 0.175 ± 0.011 | $0.355{\scriptstyle\pm0.021}$ | | TIMING (50, 10, 48) | 0.177 ±0.011 | $\textbf{0.366} {\pm} 0.021$ | ## Computational Efficiency Code