

DPE

Diverse Prototypical Ensembles Improve Robustness to Subpopulation Shift

Minh To

Subpopulation Shifts

Subpopulation shift = distribution mismatch between training and test groups.

Motivation

Training Data (attribute imbalance)

Test Data (attribute balance)

Motivation

Distance to Class 1 Prototype (Test set - Attribute 1)

Distance to Class 1 Prototype (Test set - Attribute 2)

Distance to Class 1 Prototype (Test set - Attribute 3)

Motivation

Voronoi Diagram

Diversified Prototypical Ensemble

the class.

Datasets

- Waterbirds Standard Benchmark Dataset
- Spurious correlation between the bird types and the background
- And other 8 Real-world datasets

Worst-Group Accuracy (With Subgroup Annotations)

Algorithm	Group Info (Train/Val)	Waterbirds	CelebA	CivilComments	MultiNLI	MetaShift	CheXpert
ERM	×/×	69.1 ±4.7	57.6 ±0.8	63.2 ±1.2	66.4 ±2.3	82.1 ±0.8	41.7 ±3.4
CRT	X / ~	76.3 ±0.8	70.4 ±0.4	68.5 ±0.0	65.4 ±0.1	83.1 ±0.0	74.0 ±0.2
ReWeightCRT	X / ~	76.3 ±0.2	71.1 ±0.5	68.2 ±0.4	65.3 ±0.1	85.1 ±0.4	73.9 ±0.2
DFR	X / ~ ~	89.0 ±0.2	86.3 ±0.3	66.5 ±0.2	63.8 ±0.0	81.5 ±0.0	75.4 ±0.6
ERM + DPE	X / ~ ~	91.0 ±0.4	87.7 ±0.6	<u>71.5</u> ±0.6	74.8 ±0.3	87.9 ±0.7	-
ERM*	X / X	77.9 ±3.0	66.5 ±2.6	69.4 ±1.2	66.5 ±0.7	80.0 ±0.08	75.6 ±0.4
Group DRO	~ / ~	91.4 ±1.1	88.9 ±2.3	70.0 ±2.0	77.7 ±1.4	_	-
RWG	~ / ~	87.6 ±1.6	84.3 ±1.8	72.0 ±1.9	69.6 ±1.0	_	-
JTT	X / ~	86.7	81.1	69.3	72.6	_	-
CnC	X / ~	88.5 ±0.3	88.8 ±0.9	68.9 ±2.1	_	_	-
SSA	X / ~ ~	89.0 ±0.6	89.8 ±1.3	69.9 ±2.0	76.6 ±0.7	_	-
DFR*	X / ~ ~	92.9 ±0.2	88.3 ±1.1	70.1 ±0.8	74.7 ±0.7	_	-
GAP (Last Layer)	X / ~ ~	93.2 ±0.2	90.2 ±0.3	-	74.3 ±0.2	_	-
GAP (All Layer)	X / y y	93.8 ±0.1	90.2 ±0.3	_	77.8 ±0.6	_	-
ERM* + DPE	X / ~ ~	94.1 ±0.4	90.3 ±0.7	70.8 ±0.8	75.3 ±0.5	91.7 ±1.3	76.0 ±0.3

Worst-Group Accuracy (Without Subgroup Annotations)

The top section presents SubpopBench-style baselines using an ERM backbone. The bottom section includes recent state-of-the-art methods and our method using a stronger ERM* backbone.

Algorithm	Waterbirds	CelebA	CivilComments	MultiNLI	MetaShift	CheXpert	ImageNetBG	NICO++	Living17
ERM	69.1 ±4.7	57.6 ±0.8	63.2 ±1.2	66.4 ±2.3	82.1 ±0.8	41.7 ±3.4	76.8 ±0.9	35.0 ±4.1	48.0 ±1.5
CRT	76.3 ±0.8	69.6 ±0.7	67.8 ±0.3	65.4 ±0.2	83.1 ±0.0	74.6 ±0.4	78.2 ±0.5	33.3 ±0.0	_
ReWeightCRT	76.3 ±0.2	70.7 ±0.6	64.7 ±0.2	65.2 ±0.2	85.1 ±0.4	75.1 ±0.2	77.5 ±0.7	33.3 ±0.0	_
DFR	89.0 ±0.2	73.7 ±0.8	64.4 ±0.1	63.8 ±0.0	81.4 ±0.1	75.8 ±0.3	74.4 ±1.8	38.0 ±3.8	_
ERM + DPE	91.0 ±0.5	81.9 ±0.2	69.9 ±0.9	69.3 ±0.8	84.1 ±1.5	-	87.9 ±0.6	50.0 ±0.0	54.0 ±4.0
ERM*	77.9 ±3.0	66.5 ±2.6	69.4 ±1.2	66.5 ±0.7	80.0 ±0.0	75.6 ±0.4	86.4 ±0.8	33.3 ±0.0	53.3 ±0.9
RWY	86.1 ±0.7	82.9 ±2.2	67.5 ±0.6	68.0 ±1.9	_	_	_	_	_
AFR	90.4 ±1.1	82.0 ±0.5	68.7 ±0.6	73.4 ±0.6	_	-	-	-	_
ERM* + DPE	94.1 ±0.2	84.6 ±0.8	68.9 ±0.6	70.9 ±0.8	83.6 ±0.9	76.8 ±0.1	88.1 ±0.7	50.0 ±0.0	63.0 ±1.7

Improvement over ERM Training

Effect of Diversification Strategy

Prototypes Subgroups Alignment

"Diving and surface-swimming waterbirds in open aquatic environments"

This prototype captures ecologically coherent waterbirds — mostly grebes, loons, cormorants, and gulls — all adapted to diving or floating on water. The visual consistency in plumage contrast, aquatic setting, and pose makes this a prototypical representation of the waterbird class.

"Large-bodied waterbirds in extended flight or lift-off poses"

Prototype 2 groups waterbirds with **broad wingspans**, often shown **in flight or preparing for takeoff**, including albatrosses, gulls, and terns. While backgrounds vary (bamboo, docks, ponds), the shared latent theme centers on **aerodynamic posture and silhouette geometry**, forming a distinct subpopulation that reflects a **kinetic visual mode** of aquatic birds.

"Compact-bodied diving birds with rounded silhouettes in terrestrial or ambient-light settings"

This prototype groups **grebes**, **auklets**, **guillemots**, and terns — birds that share a **morphologically compact**, **rounded form** with low profiles and dark plumage. Despite their aquatic nature, they're often shown in **mismatched land-based or bamboo-heavy scenes**, suggesting a **visually-coherent but ecologically-confounded** latent cluster.

"Standing gulls in upright posture with clean visual separation"

This prototype forms a highly coherent group of **California**, **Glaucous-winged**, **Heermann's**, **and Ring-billed Gulls**, unified by their **gray-and-white plumage**, **yellow bills**, and **erect standing poses**. It tolerates a wide range of **backgrounds**, but emphasizes **pose uniformity and size**. A single **Hooded Merganser outlier** appears, likely due to **visual mimicry in shape** rather than ecological or taxonomic alignment.

THANK YOU FOR YOUR ATTENTION