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TGNN Record Events (changes) and Update Affected Nodes (memories).
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TGNN Record Events (changes) and Update Affected Nodes (memories).

ADVANTAGE over static GNNs: 

can capture temporal history information---

achieving SOTA in dynamic graph tasks
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Severe financial or safety losses

Fraud Detection

Intrusion Detection

Drug Discovery
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Personal Recommendation

Spam Bot Filtering
Adversarial attacks can increase 

~50% misclassification rate on 

static GNNs by affecting 5% edges.
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Severe financial or safety losses

Fraud Detection

Intrusion Detection

Drug Discovery

Privacy Concerns

Personal Recommendation

Spam Bot FilteringWhat happened when adversarial attacks 

meet dynamic graphs?
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Adversarial Attacks on Graph Learning Models
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Adversarial Attacks on TGNNs 

can be very different and unexpected

Attacker’s Knowledge:

Attacker can observe 

entire input

Attacker’s Knowledge:

Attacker can observe 

up-to-attack input

Static GNN TGNN

Attacker’s Capacity:

Modify a small set of graph

Attacker’s Capacity:

Modify a small set of graph
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Missing
Graph Continue evolving after attack

Challenge: Limited Knowledge due to Changing Graphs
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Noise Decaying:  Future changes can dilute noises.

Knowledge Missing: No idea about unseen edges/nodes.
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▪ TGNNs soon recover after the 

attack time (timestamp=0)! 

▪ Impossible to solve noises 

maximizing unknown losses.
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Alternative Objective: Memory Freezing

Fact: Stale information may hurt accuracy.

Q: What if node memory no longer changes?
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Alternative Objective: Memory Freezing

Fact: Stale information may hurt accuracy.

Q: What if node memory no longer changes?
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A: Leading to >30% Accuracy Drop!
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Memfreezing: Mislead TGNNs by Preventing Node Updates
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Memfreezing persistently mislead TGNNs

SOTA GNN attacks soon diminish after attack

Memfreezing lead to >10% accuracy drop over time



Clean Acc. : 93%
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Memfreezing is effective under defenses
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SOTA GNN attacks soon diminish after attack under defenses

Memfreezing lead to ~10% accuracy drop over time under defenses

No Defense Adv. Training Lipschitz Regularization
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Memfreezing successfully freeze node memory 

In vanilla TGNNs, victim nodes change drastically

Under Memfreezing attack, victim nodes tend to stable
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More Results are Present in the Paper
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• Black-box experiments

• More ablation study

• Sensitivity study

• Stealthiness study

• Overhead

• Potential Defenses

 …
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Thanks!

MemFreezing: A Novel Adversarial Attack on Temporal 
Graph Neural Networks under Limited Future Knowledge

For more questions: Yue Dai: yud42@pitt.edu

Forty-second International Conference on Machine Learning(ICML-2025)

mailto:yud42@pitt.edu
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