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Dynamic Graphs in Real-World Applications
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Dynamic Graphs in Real-World Applications
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Temporal Graph Neural Networks

TGNN Record Events (changes) and Update Affected Nodes (memories).
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Step 1: Record Changes Step 2: Update Nodes Future: Use Latest Info for Prediction
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Temporal Graph Neural Networks

TGNN Record Events (changes) and Update Affected Nodes (memories).
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Step 1: Record Changes Step 2: Update Nodes Future: Use Latest Info for Prediction

ADVANTAGE over static GNNs:

can capture temporal history information---
achieving SOTA in dynamic graph tasks
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Robustness is A General Concern
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Robustness is A General Concern

r = Adversarial attacks can increase
—@ ~50% misclassification rate on
= 4 static GNNs by affecting 5% edges.
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Robustness is A General Concern

What happened when adversarial attacks
meet dynamic graphs?
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Adversarial Attacks on Graph Learning Models

Original: Adversarial:
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Adversarial Attacks on Graph Learning Models

Adversarial Attacks on TGNNs
can be very different and unexpected

Attacker’s Capacity:
Modify a small set of graph

Attacker’s Knowledge:
Attacker can observe
up-to-attack input




Challenge: Limited Knowledge due to Changing Graphs
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Graph Continue evolving after attack

A

CONoise Decaying: Future changes can dilute noises.
OKnowledge Missing: No idea about unseen edges/nodes.
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Challenge: Limited Knowledge due to Changing Graphs
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TGNNSs soon recover after the
attack time (timestamp=0)!

Impossible to solve noises
maximizing unknown losses.
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Alternative Objective: Memory Freezing

Fact: Stale information may hurt accuracy.
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Alternative Objective: Memory Freezing

Fact: Stale information may hurt accuracy.
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Q: What if node memory no longer changes?
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Memfreezing: Mislead TGNNs by Preventing Node Updates

MemFreezing: Push nodesto | :

subgraph-stable states

€ Freeze Node Memories

€ Propagate via Node Update
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Memfreezing: Mislead TGNNs by Preventing Node Updates

Persist: Node 3 persist frozen with
message from Node 2.
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Memfreezing persistently mislead TGNNs

Dataset WIKI REDDIT REDDIT-BODY
Model TGN JODIE Dyrep Roland | TGN JODIE Dyrep Roland | TGN JODIE Dyrep Roland
Vanilla 0.93 0.87 0.86 0.94 0.97 0.98 0.96 0.95 0.90 0.87 0.90 0.88
FN 0.81 0.74 0.74 0.82 0.84 0.83 0.84 0.83 0.76 0.82 0.77 0.79
. Meta-h | 0.90 0.83 0.81 0.85 0.93 0.95 0.90 0.92 0.86 0.83 0.88 0.85
O | TDGIA | 0.77 0.72 0.71 0.80 0.74 0.80 0.81 0.74 0.72 0.81 0.74 0.76
Ours 0.89 0.78 0.83 0.87 0.75 0.84 0.94 0.82 0.84 0.85 0.81 0.78
FN 0.92 0.87 0.85 0.94 0.97 0.97 0.96 0.93 0.90 0.86 0.89 0.88
. Meta-h | 0.93 0.87 0.84 0.93 0.96 0.98 0.94 0.96 0.89 0.86 0.90 0.87
25 | TDGIA | 0.93 0.81 0.84 0.92 0.94 0.95 0.95 0.90 0.89 0.85 0.89 0.88
Ours 0.80 0.75 0.77 0.85 0.81 0.84 0.91 0.80 0.81 0.84 0.76 0.80
FN 0.94 0.87 0.86 0.94 0.97 0.97 0.96 0.95 0.90 0.86 0.90 0.88
. Meta-h | 0.93 0.87 0.85 0.93 0.97 0.98 0.94 0.95 0.90 0.86 0.90 0.88
°0 | TDGIA | 0.93 0.87 0.85 0.93 0.96 0.97 0.95 0.92 0.89 0.86 0.90 0.87
Ours 0.75 0.76 0.75 0.84 0.80 0.84 0.91 0.80 0.77 0.82 0.76 0.77 |
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SOTA GNN attacks soon diminish after attack
Memfreezing lead to >10% accuracy drop over time
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Memfreezing is effective under defenses

No Defense
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SOTA GNN attacks soon diminish after attack under defenses
Memfreezing lead to ~10% accuracy drop over time under defenses
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Memfreezing successfully freeze node memory
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In vanilla TGNNSs, victim nodes change drastically
Under Memfreezing attack, victim nodes tend to stable
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More Results are Present in the Paper
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Black-box experiments
More ablation study
Sensitivity study
Stealthiness study
Overhead

Potential Defenses
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Thanks!

MemFreezing: A Novel Adversarial Attack on Temporal
Graph Neural Networks under Limited Future Knowledge

For more questions: Yue Dai: yud42@pitt.edu
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