

MemFreezing: A Novel Adversarial Attack on Temporal Graph Neural Networks under Limited Future Knowledge

Yue Dai*, Liang Liu*, Xulong Tang, Youtao Zhang, Jun Yang

University of Pittsburgh

Forty-second International Conference on Machine Learning(ICML-2025)

Dynamic Graphs in Real-World Applications

E-Commerce: Changing Shopping History

Social Media: Changing Relationship

Internet-of-things:
Changing connectivity

Navigating: Changing traffic

Dynamic Graphs in Real-World Applications

E-Commerce: Changing Shopping History

Social Media:Changing Relationship

Internet-of-things:
Changing connectivity

Navigating: Changing traffic

Temporal Graph Neural Networks

TGNN Record Events (changes) and **Update** Affected Nodes (memories).

Temporal Graph Neural Networks

TGNN Record Events (changes) and **Update** Affected Nodes (memories).

ADVANTAGE over static GNNs:

can capture temporal history information--- achieving **SOTA** in dynamic graph tasks

Robustness is A General Concern

Fraud Detection

Drug Discovery

Intrusion Detection

Spam Bot Filtering

watched by both users

Personal Recommendation

Severe financial or safety losses

Privacy Concerns

Robustness is A General Concern

Fraud Detection

Adversarial attacks can increase Spam Bot Filtering

~50% misclassification rate on static GNNs by affecting 5% edges.

Drug Discovery

Personal Recommendation

Severe financial or safety losses

Privacy Concerns

Robustness is A General Concern

Severe financial or safety losses

Privacy Concerns

Adversarial Attacks on Graph Learning Models

Original:

User 7 is suspicious!
Do not trust!

Adversarial:

Adversarial Attacks on Graph Learning Models

Adversarial Attacks on TGNNs can be very different and unexpected

Attacker's Capacity:
Modify a small set of graph

Attacker's Knowledge.

Attacker at observe entire input

Attacker's Capacity:
Modify a small set of graph

Attacker's Knowledge:
Attacker can observe
up-to-attack input

Challenge: Limited Knowledge due to Changing Graphs

□Noise Decaying: Future changes can dilute noises.

□Knowledge Missing: No idea about unseen edges/nodes.

Challenge: Limited Knowledge due to Changing Graphs

- TGNNs soon recover after the attack time (timestamp=0)!
- Impossible to solve noises maximizing unknown losses.

Alternative Objective: Memory Freezing

Fact: Stale information may hurt accuracy.

Q: What if node memory no longer changes?

Alternative Objective: Memory Freezing

Fact: Stale information may hurt accuracy.

Q: What if node memory no longer changes?

A: Leading to >30% Accuracy Drop!

Memfreezing: Mislead TGNNs by Preventing Node Updates

Pittsburgh

Memfreezing: Mislead TGNNs by Preventing Node Updates

Pittsburgh

Memfreezing persistently mislead TGNNs

Dataset		WIKI				REDDIT				REDDIT-BODY			
Model		TGN	JODIE	Dyrep	Roland	TGN	JODIE	Dyrep	Roland	TGN	JODIE	Dyrep	Roland
Vanilla		0.93	0.87	0.86	0.94	0.97	0.98	0.96	0.95	0.90	0.87	0.90	0.88
t_0	FN	0.81	0.74	0.74	0.82	0.84	0.83	0.84	0.83	0.76	0.82	0.77	0.79
	Meta-h	0.90	0.83	0.81	0.85	0.93	0.95	0.90	0.92	0.86	0.83	0.88	0.85
	TDGIA	0.77	0.72	0.71	0.80	0.74	0.80	0.81	0.74	0.72	0.81	0.74	0.76
	Ours	0.89	0.78	0.83	0.87	0.75	0.84	0.94	0.82	0.84	0.85	0.81	0.78
t_{25}	FN	0.92	0.87	0.85	0.94	0.97	0.97	0.96	0.93	0.90	0.86	0.89	0.88
	Meta-h	0.93	0.87	0.84	0.93	0.96	0.98	0.94	0.96	0.89	0.86	0.90	0.87
	TDGIA	0.93	0.81	0.84	0.92	0.94	0.95	0.95	0.90	0.89	0.85	0.89	0.88
	Ours	0.80	0.75	0.77	0.85	0.81	0.84	0.91	0.80	0.81	0.84	0.76	0.80
t_{50}	FN	0.94	0.87	0.86	0.94	0.97	0.97	0.96	0.95	0.90	0.86	0.90	0.88
	Meta-h	0.93	0.87	0.85	0.93	0.97	0.98	0.94	0.95	0.90	0.86	0.90	0.88
	TDGIA	0.93	0.87	0.85	0.93	0.96	0.97	0.95	0.92	0.89	0.86	0.90	0.87
	Ours	0.75	0.76	0.75	0.84	0.80	0.84	0.91	0.80	0.77	0.82	0.76	0.77

SOTA GNN attacks soon diminish after attack
Memfreezing lead to >10% accuracy drop over time

Memfreezing is effective under defenses

SOTA GNN attacks soon diminish after attack under defenses Memfreezing lead to ~10% accuracy drop over time under defenses

Memfreezing successfully freeze node memory

In vanilla TGNNs, victim nodes change drastically Under Memfreezing attack, victim nodes tend to stable

More Results are Present in the Paper

- Black-box experiments
- More ablation study
- Sensitivity study
- Stealthiness study
- Overhead
- Potential Defenses

. . .

Thanks!

MemFreezing: A Novel Adversarial Attack on Temporal Graph Neural Networks under Limited Future Knowledge

For more questions: Yue Dai: yud42@pitt.edu

