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What this work is about

SWMPO is a machine-learning system that uses Finite State Automata and

Neural Networks to model hybrid dynamical systems (i.e., continuous with
discrete components).
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Why learn models

Models are good for planning and learning.

Photo by: Nicholas Larsen

"Pilot training innovation: First successful remote simulator training"
https://www.aetc.af.mil
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Why SWMPO

Discover high-level structure and reuse components.
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Prior art

Lots of prior work.
e Automata from pretrained vision models (Hasanbeig et al, 2021)
e Hidden Markov Models or similar (e.g., rSLDS Glaser et al, 2020)

e Automata with Affine Dynamics (Soto et al 2021)
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Experiments

1. How effectively does SWMPO leverage offline data in the synthesis of
environment-specific FSMs?

2. Is the resulting FSM accurate enough for model-based RL?
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(a) Point Mass (b) LiDAR Racing (c) Salamander (d) Bipedal Walker

Figure 5. The four simulated evaluation environments.
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Figure 6. Bottom row: Box plots comparing the Levenshtein distance between predicted and ground truth labels for unseen trajectories
(lower 1is better) for each evaluation environment. Systems that accurately track the latent mode variable of a dynamical system more

accurately match the ground-truth labels. The box-plots show that SWMPO (right) outperforms baselines (left) in all environments in
tracking the latent mode variable.

SWMPO | 2025 05 26 - - 23



20

15
f=
©
=
()
x 10
5 Method
—— SAC (baseline)
0 —— SWMPO (ours)

—— Model-based SAC (baseline)

0 25 k 50 k 75k 100k 125k 150k 175k 200k
Timestep

Figure 8. Reward curves in the Point Mass environment for
SWMPO (ours), baseline model-free RL, and baseline model-
based RL with a neural feed-forward model learned online. Shaded
area are 95% confidence intervals computed over 64 different ran-
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Conclusion

e SWMPO: reusable structured world models + policy optimization.

e SWMPO matches or outperforms state of the art in our experiments, but
further work is needed to evaluate the framework in more realistic settings.
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What's next?

e Apply SWMPO to more environments

e Relax assumptions

e Use more general class of models for the discrete modelling (i.e., Python
instead of FSMs)

e Explicitly leverage FSM structure during policy optimization
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Thanks! :D
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