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What this work is about
SWMPO is a machine-learning system that uses Finite State Automata and
Neural Networks to model hybrid dynamical systems (i.e., continuous with
discrete components).
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Why learn models
Models are good for planning and learning.
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Why SWMPO
Discover high-level structure and reuse components.
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Prior art
Lots of prior work.

Automata from pretrained vision models (Hasanbeig et al, 2021)

Hidden Markov Models or similar (e.g., rSLDS Glaser et al, 2020)

Automata with Affine Dynamics (Soto et al 2021)
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Experiments
1. How effectively does SWMPO leverage offline data in the synthesis of

environment-specific FSMs?
2. Is the resulting FSM accurate enough for model-based RL?
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Conclusion
SWMPO: reusable structured world models + policy optimization.

SWMPO matches or outperforms state of the art in our experiments, but
further work is needed to evaluate the framework in more realistic settings.

SWMPO | 2025 05 26 25



What's next?
Apply SWMPO to more environments
Relax assumptions
Use more general class of models for the discrete modelling (i.e., Python
instead of FSMs)
Explicitly leverage FSM structure during policy optimization
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Thanks! :D
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