

Latent Imputation before Prediction:

A New Computational Paradigm for

De Novo Peptide Sequencing

Ye Du, Chen Yang, Nanxi Yu, Wanyu Lin, Qian Zhao, Shujun Wang*

The Hong Kong Polytechnic University

*Correspondence to: shu-jun.wang@polyu.edu.hk

The Identification Workflow of Shotgun Proteomics

Missing Fragmentation Issue

Missing signal peaks, such as b7,y8 ···

Learn to Impute the Missing Peaks

We can calculate the theoretical spectrum during training.

Latent Imputation before Prediction

Comparison with State-of-the-arts

LIPNovo achieves SOTA performance on three public datasets, e.g., achieve +20% amino acid-level improvements on the Seven-species dataset.

Table 1. Empirical comparison with state-of-the-art methods on Nine-species, Seven-species, and HC-PT datasets in amino acid-level and peptide-level performance. † denotes our retrained results, and other results are provided by NovoBench. The best is marked in bold.

	Amino Acid-Level Performance						Peptide-Level Performance					
Method	Nine-species		Seven-species		HC-PT		Nine-species		Seven-species		HC-PT	
	Prec.	Recall	Prec.	Recall	Prec.	Recall	Prec.	AUC	Prec.	AUC	Prec.	AUC
PEAKS (Ma et al., 2003)	0.748	_	-	-	_	-	0.428	-	-	_	-	-
DeepNovo (Tran et al., 2017)	0.696	0.638	<u>0.492</u>	0.433	0.531	0.534	0.428	0.376	0.204	0.136	0.313	0.255
PointNovo (Qiao et al., 2021)	0.740	0.671	0.196	0.169	0.623	0.622	0.480	0.436	0.022	0.007	0.419	0.373
InstaNovo (Eloff et al., 2023)	0.420	0.395	0.192	0.176	0.289	0.285	0.164	0.123	0.031	0.009	0.057	0.034
CasaNovo (Yilmaz et al., 2024)	0.697	0.696	0.322	0.327	0.442	0.453	0.481	0.439	0.119	0.084	0.211	0.177
AdaNovo (Xia et al., 2024)	0.698	0.709	0.379	0.385	0.442	0.451	0.505	0.469	0.174	0.135	0.212	0.178
AdaNovo [†] (Xia et al., 2024)	0.681	0.681	0.403	0.405	0.492	0.496	0.473	0.439	0.189	0.149	0.289	0.254
π -HelixNovo (Yang et al., 2024)	0.765	0.758	0.481	0.472	0.588	0.582	0.517	0.453	0.234	0.173	0.356	0.318
π -HelixNovo [†] (Yang et al., 2024)	0.765	0.752	0.465	0.462	0.532	0.537	0.509	0.431	0.218	0.156	0.301	0.261
Baseline [†] (Yilmaz et al., 2024)	0.741	0.740	0.357	0.366	0.525	0.530	0.529	0.493	0.159	0.119	0.324	0.290
LIPNovo (Ours)	0.797	0.797	0.557	0.560	0.637	0.643	0.582	0.547	0.327	0.281	0.458	0.427

Model Analysis

Ablation experiments show the effectiveness of each component.

Table 5. Component ablation. "Impu." denotes the imputation module, and $\mathcal{L}_{CE}(z')$ means the CE loss supervised on the theoretical spectrum. "Comp." means the complementary spectrum.

Baseline		Impu.	$\mathcal{L}_{ ext{CE}}(oldsymbol{z}')$	Comp.	Amino A	Acid Level	Peptide Level		
	Dascinic	impu.	CCE(Z)	Comp.	Prec.	Recal	Prec.	AUC	
1	√	X	X	X	0.741	0.740	0.529	0.493	
2	✓	X	×	\checkmark	0.755	0.755	0.537	0.500	
3	✓	\checkmark	×	\checkmark	0.766	0.764	0.546	0.513	
4	✓	\checkmark	\checkmark	X	0.782	0.782	0.569	0.536	
5	\checkmark	\checkmark	\checkmark	\checkmark	0.797	0.797	0.582	0.547	

Performance enhancement originates from imputation mechanism rather than the additional parameters.

Table 7. Parameters vs. model performance. \P is the extension.

Method	lethod # Params		Acid Level Recall	Peptide Level Prec. AUC		
Baseline	47.4M	Prec. 0.741 0.750 0.797	0.740	0.529	0.493	
Baseline¶	69.4M		0.751	0.539	0.494	
LIPNovo	68.4M		0.797	0.582	0.547	

Comparison across Missing Fragmentation Ratios (MFR)

LIPNovo achieves consistent performance improvements across MFRs.

Thanks

For more details, refer to our paper and code