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DropNeuron vs Droplnstance In MIL

Dropout

N

In an MIL framework, Dropout is typically applied to the
shallow feature extractor fy. For simplicity, considering fy
as an MLP with L layers, the feature map at the [-th layer of
fa is a 2-dimensional matrix £ € RVXP" | where DO
represents the embedding dimension. In this scenario, we
consider randomly zeroing out either entries (Hinton et al.,
2012) or entire instances in f(l). For brevity, we denote the
former as DropNeuron and the latter as DropInstance. For
a given rate p € [0, 1], both DropNeuron and DroplInstance
can be defined as performing an element-wise masking op-
eration over the feature map f O at the I-th layer of fo:

f(l) = fO o MO,

where © denotes element-wise multiplication, and M OF-
RN DY i the binary Dropout mask at the I-th layer. In the

regime of DropNeuron, each entry Ms)d in MY are from a
Bernoulli distribution: MT% ~ Bernoulli(p). In contrast,

each row in M) has the same entry and is sampled from a

Bernoulli distribution in the case of DropInstance: M,(f) ~
Bernoulli(p).

DropNeuron: Random Dropout
elements in feature map

Droplinstance: Random drop out whole
instance




DropNeuron vs Droplnstance In MIL
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Figure 3. The landscape of the loss function £y for two different dropout strategies (a) DropNeuron and (b) DropInstance as well as (c)
the performance of MIL models against different noise attacks. We mark the Euclidean ball Bz (¢, 6™) around the optimal parameter 6*
(see Eq. 5) in subpanel figure (a) and (b) with a red circle. We observe that the landscape of Ly in the DroplInstance scenario leads to
flatter minima compared to DropNeuron, which also results in a better performance in AUC.

Dropout based on instance leads to flatter local minima that typically have
better generalizability.



How to impose Dropout

Here, we further investigate how to apply Droplnstance.
Previous studies have revealed that the effectiveness of al-
gorithms or modules (e.g.Dropout) can be reflected by the
gradient direction error (GDE) or gradient variance during
model optimization. The gradient direction error quantifies
the dissimilarity between the mini-batch gradient gs¢e, and
whole dataset gradient §:

_i l (Gstep> 9) )
GDE = G > > (1 ;

Gsep EG ”gstep”2 ' ”.@HZ

where GG is a set of mini-batch gradients. Leveraging
GDE, we investigate the impact of three different Dropln-
stance strategies, including dropping (i) top-k instances, (ii)
bottom-k instances, and (iii) random instances.

Liu, Zhuang, et al. "Dropout reduces underfitting." International Conference on Machine Learning. PMLR, 2023.



How to impose Dropout
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Figure 4. The comparison of change of GDE (Left) over the first 10,000 iterations as well as performance and loss (line plot) and AUC
(bar plot) when using different instance dropout strategies (Right), where the area under GDE is the area enclosed by GDE and the x-axis.
Dropping the top-k instances shows the smallest GDE, training loss , and highest AUC among all four strategies.

Dropping the top-k most important instances typically leads to better
performance and gradient error direction !



MIL Dropout

Algorithm 1 MIL-Dropout Mechanism

Input: Input feature map £ = {vy,--- ,vn}, K and G
Output: Processed Bag f O with MIL-Dropout

1:
2

10:

X 90 =1 IOy D o

Initial: M < 1, po) (# Initial mask)
Select top-k important instances: ( fg), f%)) —
split(f¥), A<« [K](Eq. 7)

: Compute the similarity matrix between rest instances

f%) and top-K instances fg)

(# Obtain G instances from f %) that are most similar
to every top-K instance)
for: =1to K do
A; = argmaxscRr,|s|=G X jes Si.j (Eq- 8)
end for
M[A,:]=0
5O 1 (f9 o M) (Eq. 9)

A

return f @) (# Masking and normalization)




Experiments

Table 1. Performance comparison on MIL benchmark datasets. Each experiment is performed five times with 10-fold cross-validation.

We reported the mean of the classification accuracy (= the standard deviation of the mean).

Methods MUSKI1 MUSK2 FOX TIGER ELEPHANT
mi-Net 0.880 £ 0.039 0.858 £ 0.049 0.613 £0.035 0824 +0.034 0.858 £ 0.037
MI-Net 0.887 + 0.041 0.859 + 0.046 0.622 +0.038 0.830 + 0.032 0.862 + 0.034
MI-Net with DS | 0.894 + 0.042 0.874 + 0.043 0.630 + 0.037 0.845 + 0.039 0.872 -+ 0.032
MI-Net with RC | 0.898 + 0.043 0.873 + 0.044 0.619 +0.047 0.836 + 0.037 0.857 + 0.040
ABMIL 0.892 + 0.040 0.858 +0.048 0.615+0.043 0.839 + 0.022 0.868 -+ 0.022
ABMIL-Gated | 0.900 & 0.050 0.863 + 0.042 0.603 +0.029 0.845 + 0.018 0.857 + 0.027
GNN-MIL 0917 + 0.048 0.892 +0.011 0.679 +0.007 0.876 + 0.015 0.903 + 0.010
DP-MINN 0.907 + 0.036 0.926 + 0.043 0.655+0.052 0.897 + 0.028  0.894 + 0.030
NLMIL 0921 +0.017 0.910+0.009 0.703 +0.035 0.857 +0.013 0.876 = 0.011
ANLMIL 0912 +0.009 0.822+0.084 0.643+0012 0.733 +0.068 0.883 & 0.014
DSMIL 0932+ 0.023 0.930+0.020 0.729+0.018 0.869 + 0.008 0.925 -+ 0.007
i 0.964 + 0.033 0954 +0.019 0.789 +0.043 0917 + 0.036 0.934 + 0.046
+ MIL-Dropout =

ABMIL-Gated | ¢ g7 | 0019 0958 +0.021 0788+ 0.016 0.919 + 0.033 0.927 + 0.033

+ MIL-Dropout




Experiments

Table 2. Comparison of performance before and after plugging MIL-Dropout into four different types of MIL aggregators and their
variants on CAMELOYON16 and TCGA-NSCLC datasets. A denotes the performance gains after the integration of MIL-Dropout. The
classification accuracy (%), F1 score (%), and AUC (%) are reported (+ the standard deviation of the mean) by running each experiment
five times.

CAMELOYON16 TCGA-NSCLC
ImageNet Pretrained SimCLR Pretrained ImageNet Pretrained SimCLR Pretrained

Accuracy F1 AUC Accuracy Fl AUC ] Accuracy F1 AUC Accuracy F1 AUC

86.3+1.1 85.0+1.0 86.0+0.5 856+09 842+13 866+14 | 87.5+0.8 875+08 924+05 879+08 88.1+0.6 93.8+0.8
ABMIL +MIL Dropout 87.2+1.0 86.4+0.8 90.1+0.8 88.6+1.1 874+10 883+12 |91.1+13 91.1+13 956+04 914+06 915+05 959+0.1
A +0.9 +1.4 +4.1 +3.0 +3.2 +1.7 +3.6 +3.6 +3.2 +3.5 +34 +2.1

86.9+1.1 857+1.2 862+1.2 843+1.1 834+10 859+1.6|879+09 879+09 928+09 89.0+12 89.0+12 944+0.7
ABMIL- +MIL Dropout 90.4+1.3 89.6£1.2 90.7+09 87.7+13 867+13 874+09 |90.0+06 90.0+06 953+03 90.8+0.7 90.8+0.7 958+02
Gated A +3.5 +3.9 +4.6 +3.4 +4.2 +1.5 +2.1 +2.1 +2.5 +1.8 +1.8 +1.4

85.5+0.8 84.3+1.1 89.0+1.8 833+1.0 820%+14 859+16|89.3+07 89.4+0.7 942+03 84.1+18 862+15 92016
DSMIL +MIL Dropout 87.9+1.5 86.8+1.6 90.6+1.2 856+09 848+0.5 87.6+0.8 | 89.9+0.6 90.0+0.5 953+06 869+04 883+02 939+03
A +2.4 +2.6 +1.6 +2.3 +2.8 +1.7 +0.6 +0.6 +1.1 +2.8 +2.1 +1.9

84.7+2.1 833+29 86.5+24 868+10 859+12 89.7+06 | 869+0.6 87.0+06 933+0.7 882+21 883+21 946+1.1
TransMIL + MIL Dropout 86.0+1.5 84.9+1.5 894+09 89.7+13 887+14 903+12 | 880+05 885+1.1 943+04 91.6+09 920+0.7 962+0.6
A +1.3 +1.3 +2.9 +2.9 +2.8 +0.6 +1.1 +1.6 +1.0 +2.8 +3.7 +1.6

84.1£0.6 755+£0.6 882+03 874+x09 81.8+x12 89.6+09 | 885+£0.5 88.0+£03 944+02 87.6+03 87.8+x04 93.1+02
DTFD- +MIL Dropout 85.7+1.4 79.1+£22 899+0.6 885+£0.7 842+0.6 925+10|903+£04 90.0+£04 948+0.1 91.5+04 91.8+£04 96.1+£0.2
MIL(AFS) A +1.6 +3.6 +1.6 +1.5 +2.4 +2.9 +1.8 +2.0 +0.4 +3.9 +4.0 +3.0

847+18 783+24 878+08 87.7+15 820+23 884+09 |874+10 87310 938+0.1 851+12 849+22 91.0+1.0
DTFD- +MIL Dropout 86.5+0.9 81.0+13 89.8+09 895+04 844+04 916+05 | 888+0.5 884+05 950+04 875+25 882+22 932+1.0
MIL(MaxS) A +1.8 +2.7 +2.0 +1.8 +2.4 +3.2 +1.4 +1.1 +1.2 +24 +3.3 +2.2




Ablation Study and Visualization
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Figure 5. Ablation studies on the number of top-k instances K (a) and similarity instance S (b) using CAMELYON16 and TCGA-NSCLC
datasets. (c) Attention map from ABMIL without and with MIL-Dropout, with tumor regions outlined in red. Brighter cyan in columns
two and three indicates higher tumor probability (higher attention score) for corresponding locations.



