Models of Heavy-Tailed Mechanistic Universality

Liam Hodgkinson (University of Melbourne) Zhichao Wang (UC Berkeley) Michael W. Mahoney (UC Berkeley)

Forty-Second International Conference on Machine Learning (ICML 2025)

Heavy-Tailed Phenomena in Machine Learning

 Gradient norms (Simsekli et al., 2019; Hodgkinson et al., 2020) and loss curves (Hestness et al., 2017; Hoffman et al., 2024).

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

 Power law appears in neural scaling laws (Kaplan et al., 2020; Wei et al., 2022; Defilippis et al., 2024; Paquette et al., 2024; Lin et al., 2024).

• Eigenvalues of Gram matrices in neural nets: data covariance (Sorscher et al., 2022; Zhang et al., 2023), activation (conjugate kernel) (Pillaud-Vivien et al., 2018; Agrawal et al., 2022; Wang et al., 2023), Hessian (Xie et al., 2023), Jacobian (Wang et al., 2023).

 Strong correlation between heavy-tailed trained weight matrices & model performance (Martin & Mahoney, 2021); useful for layer-wise diagnostics (Zhou et al., 2023; Lu et al, 2024).

Heavy-Tailed Mechanistic Universality

Definition

Heavy-tailed distributions (informally): densities decaying slower than exponential, often exhibiting power-law tails

$$f(x) \sim c x^{-\alpha}, \quad x \to \infty.$$

Existing Approaches for Describing HT-MU:

- iid Heavy-Tailed Elements: (Arous & Guionnet, 2008). Elements of feature matrices are not independent and heavy-tailed in practice.
- Kesten Phenomenon: (Hodgkinson & Mahoney, 2021;
 Gurbuzbalaban et al, 2021; Vladimirova et al, 2018; Hanin & Nica, 2020) a mechanism discovered by Kesten (1973) for recursive systems.
- Population Covariance: power-law in, power-law out (PIPO) principle.

Open Questions:

- Why do spectral densities of trained feature and weight matrices exhibit heavy-tailed behavior?
- How do data structure, training dynamics, and implicit model bias interplay to produce heavy tails?

Need new RMT for **Heavy-Tailed Mechanistic Universality** (HT-MU).

Entropic Regularization Setup

Stochastic Minimization Operator

$$\label{eq:force_eq} \begin{array}{l} \underset{\Theta}{\overset{\pi_{\Theta},\tau}{\text{smin}}} f(\Theta) \; := \; \min_{g \in \mathcal{P}} \left[\mathbb{E}_{q(\Theta)}[f(\Theta)] \; + \; \tau \, \text{KL}(q \, \| \, \pi_{\Theta}) \right], \end{array}$$

where \mathcal{P} is the set of probability densities on the support of π_{Θ} .

Feature Learning Setup: Stochastic minimization in two stages

$$q(\Phi) = \underset{\Phi}{\operatorname{argsmin}} \left[\underset{\Theta}{\overset{\pi_{\Theta}, \tau}{\min}} L(\Theta, \Phi) \right].$$

- π_{Θ}, π_{Φ} : initial densities of model coefficients Θ and features Φ .
- $\tau, \eta > 0$: "temperatures" control coefficient vs. feature learning rates.

Proposition (Optimal Feature Density)

$$q(\Phi) \propto \left[\mathcal{Z}_{ au}(\Phi)\right]^{ au/\eta} \pi_{\Phi}(\Phi)$$
, where $\mathcal{Z}_{ au}(\Phi) = \mathbb{E}_{\Theta \sim \pi_{\Theta}} \exp \left(-L(\Theta,\Phi)/ au\right)$.

Master Model Ansatz

• Ansatz: for trained feature matrices, with parameters $\alpha, \beta > 0$ and initial density π :

$$q(\mathit{M}) \, \propto \, (\det \mathit{M})^{-lpha} \, \exp\!\left(-eta \operatorname{tr}(\Sigma \, \mathit{M}^{-1})
ight) \pi(\mathit{M})$$

- $\alpha, \beta > 0$ depend on model/optimizer hyperparameters.
- Σ is label/covariance-related (e.g., YY^{\top}).
- $\pi(M)$ is the prior "initialization" density of the feature matrix.
- To get spectral density, change of variables $M \mapsto Q \Lambda Q^{\top}$ for orthogonal Q and diagonal Λ ; so we only need to study the spectral distribution Λ .
- Let $\Sigma = I$ to remove the effect of Σ for now.

Eigenvector Structure and Beta-Ensembles

- **Key Assumption:** Distribution of eigenvectors Q is not uniform! (non-Haar) due to implicit model biases.
- Consider variety of matrix structures to understand effect on eigenvalues
- Use **Beta-Ensemble** (Dumitriu & Edelman, 2002; Forrester, 2010) with parameter $\kappa \in [0, \infty]$ to capture the Master Model Ansatz:

$$q_{\kappa}(\lambda_1,\ldots,\lambda_N) \propto \prod_{i=1}^N \lambda_i^{-\alpha} e^{-\beta \lambda^{-1}} \prod_{i < j} |\lambda_i - \lambda_j|^{\kappa/N}$$

- As model architecture induces *more structure* (fewer free eigenvector degrees of freedom), κ decreases \Rightarrow heavier tail in spectrum.
- We provide a numerical algorithm to efficiently estimate κ .

The HTMP Distribution

Theorem (Generalized Marchenko-Pastur)

Let M_N follow the high-temperature beta-ensemble. The empirical spectral distribution of M_N^{-1} (appropriately scaled) converges to:

- 1. MP_{γ} (Marchenko-Pastur distribution) if $\kappa(N) \to \infty$;
- 2. **HTMP**_{γ,κ} (High-Temperature MP) if $\kappa(N) \to \kappa \in (0,\infty)$.

Main Theorem: Tail Behavior for Trained Features

Theorem (Spectral Density of Trained Feature Matrix)

Let ρ_N be the ESD of a trained feature matrix M_N , and μ_{Σ} the spectral measure of label covariance Σ . Then

$$\rho_N(\lambda) \xrightarrow[N\to\infty]{} (\mu_{\Sigma} \boxtimes \rho)(\lambda),$$

where \boxtimes is multiplicative free convolution, $\rho(\lambda) = \lambda^{-2} \, \rho_{\rm HTMP}(\lambda^{-1})$ if $\kappa < \infty$. Additionally,

- Inverse-Gamma Law near zero: If $\kappa < \infty$, density $\rho(x) \sim x^{-\frac{\kappa}{2\gamma}-1-\frac{\kappa}{2}} \exp\left(-\frac{\beta_-}{x}\right)$ as $x \to 0^+$.
- Power-Law Tail: $\rho(x) \sim x^{-\frac{\kappa}{2\gamma}-1+\frac{\kappa}{2}}$ for $x \to \infty$.

5+1 Phases for Trained Weight: HTMP Fits

Figure: Weight spectral densities for MiniAlexNet trained on CIFAR-10 with batch sizes 1000, 800, 250, 100, 50, 5 (top to bottom). Fitted MP/HTMP curves shown in red dashed with different κ .

As batch size decreases, κ decreases \Rightarrow heavier tail.

- (a)–(c): $\kappa = \infty$ for MP or MP+spike behavior.
- (d)–(f): Finite κ for heavy tail plus eventual rank collapse.

Neural Scaling Law

- **Setup:** Ridge regression for a fixed set of features Φ .
- Spectral Assumption: Feature matrix follows Master Model (HTMP $_{\gamma,\kappa}$).
- Data-Free Scaling Law: Predicts test loss decay solely from spectral tail; no access to held-out data required. Previous scaling law work focus on power law in the dataset (e.g., Wei et al (2022); Defilippis et al (2024); Paquette et al (2024); Lin et al (2024)),

Proposition

Let $\mu = n^{-\ell}$ with $\ell \in (0,1)$. Then, with high probability, the **Generalization Error** satisfies

$$\mathcal{L} \asymp n^{-\ell\left(2+rac{\kappa}{2\gamma}-rac{\kappa}{2}
ight)}, \quad n o \infty.$$

Thank You!

Liam Hodgkinson, Zhichao Wang, Michael W. Mahoney. "Models of Heavy-Tailed Mechanistic Universality" https://arxiv.org/abs/2506.03470.