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Heavy-Tailed Phenomena in Machine Learning

• Gradient norms (Simsekli et al., 2019; Hodgkinson et al.,
2020) and loss curves (Hestness et al., 2017; Hoffman et al.,
2024).



• Power law appears in neural scaling laws (Kaplan et al., 2020;
Wei et al., 2022; Defilippis et al., 2024; Paquette et al., 2024;
Lin et al., 2024).



• Eigenvalues of Gram matrices in neural nets: data covariance
(Sorscher et al., 2022; Zhang et al., 2023), activation
(conjugate kernel) (Pillaud-Vivien et al., 2018; Agrawal et al.,
2022; Wang et al., 2023), Hessian (Xie et al., 2023), Jacobian
(Wang et al., 2023).



• Strong correlation between heavy-tailed trained weight
matrices & model performance (Martin & Mahoney, 2021);
useful for layer-wise diagnostics (Zhou et al., 2023; Lu et al,
2024).



Heavy-Tailed Mechanistic Universality

Definition

Heavy-tailed distributions (informally): densities decaying slower
than exponential, often exhibiting power-law tails

f (x) ∼ c x−α, x → ∞.

Existing Approaches for Describing HT-MU:

• iid Heavy-Tailed Elements: (Arous & Guionnet, 2008). Elements

of feature matrices are not independent and heavy-tailed in practice.

• Kesten Phenomenon: (Hodgkinson & Mahoney, 2021;
Gurbuzbalaban et al, 2021; Vladimirova et al, 2018; Hanin & Nica,
2020) a mechanism discovered by Kesten (1973) for recursive
systems.

• Population Covariance: power-law in, power-law out (PIPO)

principle.



Open Questions:

• Why do spectral densities of trained feature and weight
matrices exhibit heavy-tailed behavior?

• How do data structure, training dynamics, and implicit model
bias interplay to produce heavy tails?

Need new RMT for Heavy-Tailed Mechanistic Universality
(HT-MU).



Entropic Regularization Setup

• Stochastic Minimization Operator

πΘ,τ

smin
Θ

f (Θ) := min
q∈P

[
Eq(Θ)[f (Θ)] + τ KL(q ∥πΘ)

]
,

where P is the set of probability densities on the support of πΘ.

• Feature Learning Setup: Stochastic minimization in two stages

q(Φ) =
πΦ,η

argsmin
Φ

[ πΘ,τ

smin
Θ

L(Θ,Φ)
]
.

• πΘ, πΦ: initial densities of model coefficients Θ and features Φ.
• τ, η > 0: “temperatures” control coefficient vs. feature

learning rates.

Proposition (Optimal Feature Density)

q(Φ) ∝
[
Zτ (Φ)

]τ/η
πΦ(Φ), where Zτ (Φ) = EΘ∼πΘ

exp
(
−L(Θ,Φ)/τ

)
.



Master Model Ansatz

• Ansatz: for trained feature matrices, with parameters
α, β > 0 and initial density π:

q(M) ∝ (detM)−α exp
(
−β tr(ΣM−1)

)
π(M)

• α, β > 0 depend on model/optimizer hyperparameters.
• Σ is label/covariance-related (e.g., Y Y⊤).
• π(M) is the prior “initialization” density of the feature matrix.

• To get spectral density, change of variables M 7→ QΛQ⊤ for
orthogonal Q and diagonal Λ; so we only need to study the
spectral distribution Λ.

• Let Σ = I to remove the effect of Σ for now.



Eigenvector Structure and Beta-Ensembles

• Key Assumption: Distribution of eigenvectors Q is not
uniform! (non-Haar) due to implicit model biases.

• Consider variety of matrix structures to understand effect on
eigenvalues

• Use Beta-Ensemble (Dumitriu & Edelman, 2002; Forrester,
2010) with parameter κ ∈ [0,∞] to capture the Master Model
Ansatz:

qκ(λ1, . . . , λN) ∝
∏N

i=1 λ
−α
i e−βλ−1 ∏

i<j |λi − λj |κ/N

• As model architecture induces more structure (fewer free
eigenvector degrees of freedom), κ decreases ⇒ heavier tail
in spectrum.

• We provide a numerical algorithm to efficiently estimate κ.



The HTMP Distribution

Theorem (Generalized Marchenko–Pastur)

Let MN follow the high-temperature beta-ensemble. The empirical
spectral distribution of M−1

N (appropriately scaled) converges to:

1. MPγ (Marchenko-Pastur distribution) if κ(N) → ∞;

2. HTMPγ,κ (High-Temperature MP) if κ(N) → κ ∈ (0,∞).



Main Theorem: Tail Behavior for Trained Features

Theorem (Spectral Density of Trained Feature Matrix)

Let ρN be the ESD of a trained feature matrix MN , and µΣ the
spectral measure of label covariance Σ. Then

ρN(λ) −−−−⇀
N→∞

(
µΣ ⊠ ρ

)
(λ),

where ⊠ is multiplicative free convolution,
ρ(λ) = λ−2 ρHTMP(λ

−1) if κ < ∞. Additionally,

• Inverse-Gamma Law near zero: If κ < ∞, density

ρ(x) ∼ x−
κ
2γ

−1−κ
2 exp

(
−β−

x

)
as x → 0+.

• Power-Law Tail: ρ(x) ∼ x−
κ
2γ

−1+κ
2 for x → ∞.



5+1 Phases for Trained Weight: HTMP Fits

Figure: Weight spectral densities for MiniAlexNet trained on CIFAR-10
with batch sizes 1000, 800, 250, 100, 50, 5 (top to bottom). Fitted
MP/HTMP curves shown in red dashed with different κ.

As batch size decreases, κ decreases ⇒ heavier tail.
(a)–(c): κ = ∞ for MP or MP+spike behavior.
(d)–(f): Finite κ for heavy tail plus eventual rank collapse.



Neural Scaling Law

• Setup: Ridge regression for a fixed set of features Φ.

• Spectral Assumption: Feature matrix follows Master Model
(HTMPγ,κ).

• Data-Free Scaling Law: Predicts test loss decay solely from spectral
tail; no access to held-out data required. Previous scaling law work
focus on power law in the dataset (e.g., Wei et al (2022); Defilippis
et al (2024); Paquette et al (2024); Lin et al (2024)),

Proposition

Let µ = n−ℓ with ℓ ∈ (0, 1). Then, with high probability, the
Generalization Error satisfies

L ≍ n
−ℓ
(
2+

κ
2γ−κ

2

)
, n → ∞.
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