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Abstract

We propose novel coreset construction algorithms for regularized
logistic regression in both centralized and vertical federated learning
(VFL) settings. Our methods improve coreset size bounds for
regularized linear regression in VFL by removing dependence on data
partition properties. The improvements stem from leveraging reduced
model complexity due to regularization. Empirical results support our
theoretical guarantees, showing that training on coresets yields
performance comparable to full data training.
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Introduction

Coreset
Coresets are weighted samples of datasets with provable theoretical
guarantees.
More formally, let Z = {(xi, yi)}ni=1 be a dataset of n points with
X ∈ Rn×d, labels y ∈ Rn. Let Q denote the model space as q ∈ Q. With
that, a subset S ⊂ Z with weights w is an (ε, δ)-coreset if, for all q ∈ Q,

(1− ε)f(Zυ,q) ≤ f(Sw,q) ≤ (1 + ε)f(Zυ,q)

holds with probability ≥ 1− δ.
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Introduction

Federated Learning
Federated learning has become a go-to approach for training machine
learning models across distributed clients without sharing raw data. A
central server coordinates model updates by selecting clients and
synchronizing their contributions. FL comes in two main forms:
→ Horizontal FL (HFL): Clients have data with the same features

but different samples.
→ Vertical FL (VFL): Clients hold different features of the same set

of samples.
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Figure: HFL and VFL representation in Federated Learning.
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Introduction

Horizontal Federated Learning (HFL)
HFL: Consider a model q and a set of clients T . A basic federated
learning procedure is described as

q
(j)
r,k+1 = q

(j)
r,k − η∇q(j)cost(Z(j),q

(j)
r,k)

∀j ∈ Sr ⊆ [T ],∀k ∈ [K − 1], ∀r ∈ [R]

qr+1 =
1

|Sr|
∑
j∈Sr

q
(j)
r,K ,

where at each synchronization round r ∈ [R], Sr ⊆ [T ] clients
participate in local training for K − 1 steps.η > 0 is the learning rate.
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Introduction

Vertical Federated Learning (VFL)
In VFL, the feature space X is partitioned across clients j ∈ [T ], where
each holds X(j) such that

⋃
j∈[T ]X

(j) = X.

Client j ∈ [T ] computes ∇q(j)cost(X(j),q(j)
r ).

qr+1 = qr − η
⋃

j∈[T ]

∇q(j)cost(X(j),q(j)
r )

∀r ∈ [R], ∀j ∈ [T ].

Here, q ∈ Q denotes the model parameter.
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Introduction

Vertical Regularized Logistic Regression (VRLog)

ClassLoss(Z,q, λ) =
n∑

i=1

ln
(
1 + exp(−yix

⊤
i q)

)
+ λ∥q∥1

For a given dataset Z consisting of X representing the points and y be
their labels in the VFL model, a regularization parameter λ > 0, the
goal of the VRLog problem is to compute a vector q ∈ Rd on the server
that (approximately) minimizes ClassLoss(Z,q, λ) while maintaining
minimum total communication complexity.

CSE IIITD Coreset for VFL July 8, 2025 8 / 23



Introduction

Coreset Loss for VRLog

ClassLoss(Sw,q, λ) ∈ (1± ε) · ClassLoss(Z,q, λ)

Where Sw be a weighted set, comprising of a subset S ⊆ Z with an
associated weight function w. We call Sw an ε-coreset for VRLog if
with at least 0.99 probability, it guarantees the above requirement for
ClassLoss for every q ∈ Rd.
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Introduction

Vertical Ridge Linear Regression (VRLR)

RegLoss(Z,q, λ) =
n∑

i=1

(x⊤
i q− yi)

2 + λ∥q∥22

Where λ > 0regularization parameter ,the goal of the VRLR problem is
to compute a vector q ∈ Rd on the server that (approximately)
minimizes ClassLoss(Z,q, λ) while maintaining minimum total
communication complexity.
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Introduction

Coreset Loss for VRLR
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Introduction

Regularized Sensitivity
For every point i ∈ [n], the sensitivity score is defined as:

si = sup
q∈Q

f(zi,q)

loss(Z,q, λ)

In the above definition, the importance of every point i ∈ [n] is
quantified by si, which is the supremum of the relative loss of the
point to the complete regularized loss over all feasible models. The
sensitivity scores can be any value between 0 and 1. Further, as λ
increases, the sensitivity score decreases.

CSE IIITD Coreset for VFL July 8, 2025 12 / 23



Flowchart for Computing g(j) for VRLog and VRLR

Start: Compute g(j) for VRLog/ VRLR

Compute Z(j)

from {X(j),y}

Compute Ẑ(j) =

(
Z(j)

λIdj

)

Return g(j) =

LewisWeight(Ẑ(j), 1)

If j = T :

Ẑ(T ) =

(
X(T ) y√
λIdT 0

)

Else: Ẑ(j) =

(
X(j)

√
λIdj

)

Return g(j) =

LewisWeight(Ẑ(j), 2)
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Compute Coreset for VRLR / VRLog

Start: Each client j ∈ [T ] has data Z(j) and vector g(j)

Each client j ∈ [T ] sends total G(j) =
∑

i g
(j)
i to server

Server computes G =
∑

j G
(j) and samples subset C ⊆ [T ] proportional to G(j)

Each client j ∈ C samples ⌈m/T ⌉ points and sends indices S(j) to server

Server aggregates S = ∪jS
(j) and broadcasts S to all clients

All clients send {g(j)i }i∈S to server

Server computes weights: w(i) = G

card(S)
∑

j g
(j)
i

Output: Coreset Sw = (S,w)
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VRLR Coresets

We propose a tighter ε-coreset for VRLR that improves on
[Huang et al., 2022], with better theoretical guarantees and reduced
dependence on ill-conditioned data partitions.

→ Coreset size is reduced by avoiding dependence on
(
σmax
σmin

)2
.Each

client computes local ℓ2 Lewis scores using regularized data
matrices.

→ Final coreset size depends only on the number of clients T and
statistical dimension.
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VRLR Coresets

Coreset Size
The algorithm returns a ε-coreset for VRLR of size

m = O

(
T
∑T

j=i sd(Z
(j), λ, 2) log(d)

ε2

)

The computable in input-sparsity time O(nnz(Ẑ)) with probability at
least 0.99.Training on this coreset requires communication complexity
O(mT ) and achieves (1± ε) approximation for ridge regression.

Statistical dimension
Statistical dim: For a matrix A ∈ Rn×d and λ > 0, the ℓ2 statistical
dimension is defined as sd(A, λ, 2) =

∑d
i=1

1
1+λ/σ2

i
, where {σi} are

singular values of M = U⊤Dp/2−1A and U is the ℓ2 Lewis basis of A.
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VRLog Coresets

We propose a provably tight ε-coreset construction for regularized
logistic regression (VRLog) using local ℓ1 Lewis weights with
communication-efficient computation.[Feldman and Langberg, 2011]
→ Each client computes scores from regularized local features using

ℓ1 Lewis weights.
→ Coreset size depends on the µ-complexity and ℓ1 statistical

dimension of each partition.
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VRLog Coresets

Enables efficient federated training with bounded sensitivity and no
dependence on

√
n.

Coreset Size
the algorithm computes an ε-co reset in Õ(nd2) of size

m = O

(
µ2T

∑T
j=1 sd(Z

(j), λ, 1)

ε2

)

For some ε ∈ (0, 1) and the model can be trained with communication
complexity O(mT )
This coreset yields a (1± ε) approximation to the logistic regression
loss with probability at least 0.99, while scaling gracefully with T and
feature dimensions.
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Our Core Contribution

Sensitivity and Regularization Effect. Consider a dataset A with n
points in Rd such that n/d = c, and assume the response vector is 0.
Let A⊤ =

[
I · · · I

]⊤, where I is the identity matrix in Rd. Following
Huang et al. [Huang et al., 2022], the sensitivity score per point is 1/c,
and total sensitivity for n points is n/c = d, regardless of whether
λ = 0 or λ > 0.
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Our Core Contribution

We have clearly motivated why a smaller coreset size is expected for
the case when λ > 0, the regularized sensitivity becomes 1/(c+ λ), and
total sensitivity reduces to n/(c+ λ) < d. In fact, for higher values of λ,
the total sensitivity score could be significantly smaller. Therefore,
regularization reduces the size of the coreset by at least a factor of
c/(c+ λ).
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Experiments

Figura 1: VRLog Coreset Performance (Credit Card)

VRLog (Credit Card Dataset): Our method, AugLewis, consistently
outperforms existing baselines (Uniform, HLSZ, SqLev, Lewis) in F1
score and model recovery, while achieving up to 100× faster training
with strong approximation guarantees on training loss. 1

1Codes available at https://github.com/dcll-iiitd/CoresetForVFL
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Experiments

Figura 2: VRLR Coreset Performance (Blog Feedback, Financial Dataset)

VRLR (Blog Feedback Datasets): Our sampling method, Lev,
significantly reduces test RMSE and improves model closeness
compared to Uniform and leverage-based approaches, aligning with
theoretical expectations from regularized sensitivity scores
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