Large Displacement Motion Transfer with Unsupervised Anytime Interpolation

Guixiang Wang¹, Jianjun Li²

¹School of Computer Science and Engineering, Hangzhou Dianzi University ²School of Information Science and Technology, Hangzhou Normal University

ICML 2025

What is Motion Transfer?

- Aims to transfer pose from a driving video to an object in a source image, animating the source object.
- Hot research topic with applications in film animation, game production, and face exchange.
- Goal: Animate a still image by transferring pose from a driving video to generate a video with the same pose.
- Key challenges:
 - Accurately transfer motion patterns.
 - Maintain identity consistency.
 - Struggle with large displacement motions.

Problem Statement & Existing Methods

- Problem: Current unsupervised methods struggle with large displacement motions.
- Existing Methods (Limitations):
 - Supervised methods: Rely on prior knowledge (landmarks, 3D models), often fail with out-of-training data.
 - Unsupervised methods:
 - FOMM, MRAA: Use local linear affine transformations, struggle with non-linear object motion.
 - TPSMM: Uses Thin-plate splines, but keypoint detection is often inaccurate
 - CPABMM: Uses continuous piecewise affine transformation, limited in finer motions, causing artifacts.
 - CoP: Based on chain-of-pose, difficult to obtain pose chains with different identity information or large displacement.

Proposed Method: Unsupervised Anytime Interpolation

- Core Idea: Decompose large displacement motion into many small displacement motions by inserting intermediate images.
- Keypoint-based anytime interpolation:
 - Estimates keypoint information of interpolated images based on source and driving image keypoints.
 - Assumes linear motion of each keypoint.
 - Uses a dense motion network to predict motion low from source to interpolated images.
 - Generates interpolated images using an image generation network.

Overall Architecture

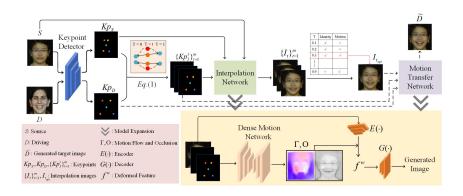


Figure: Overall framework of the proposed method.

Motion Transfer with Optimal Interpolated Image

- Traditional methods struggle with large displacement motion directly from source to driving.
- The proposed method uses an optimal interpolated image (Itopt) to replace the source image for motion transfer.
- Optimal Interpolation Selector: Selects an image from a series of interpolated images that satisfies two requirements:
 - Maintains identity information integrity.
 - Has small motion to the driving image.
- Small displacement motion estimation from interpolated to driving image is more accurate.

Example of Anytime Interpolation

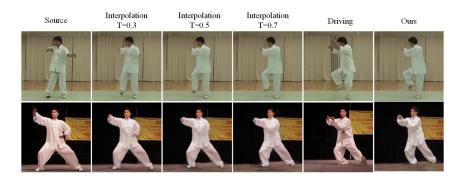


Figure: Interpolation results generated at different moments under the same identity

Example of Anytime Interpolation

Figure: Interpolation results generated at different moments under the different identity.

Proposed Method: Bidirectional Training Strategy

- Proposed because there are no real images as labels for interpolation, ensuring meaningful optimal interpolated images.
- Consists of two pipelines: Source to Driving (S to D) motion transfer and Driving to Source (D to S) motion transfer.
- Adds constraints to ensure consistency between optimal interpolated images generated by both pipelines.

Bidirectional Training Strategy Diagram

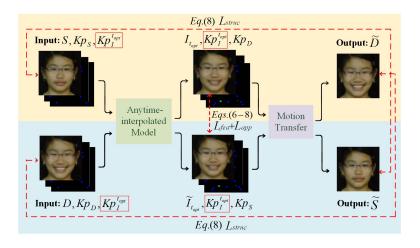


Figure: Bidirectional training strategy for consistency.

Proposed Method: Loss Functions

- Using pre-trained Vision Transformer (ViT) for constraints to encourage high-quality images.
- Reconstruction loss (Lrec): Ensures generated images are realistic (using VGG-19 network).
- Feature consistency loss (Lfea): Encourages optimal interpolated images to be consistent.
- Appearance consistency loss (Lapp): Encourages consistent appearance of optimal interpolated images using ViT.
- Structural consistency loss (Lstruc): Ensures structural consistency of optimal interpolated images, source, and driving images using ViT.

Experimental Results & Analysis

- Datasets: UvA-Nemo, Fashion, Tai-Chi-HD, and TedTalks (faces and human bodies).
- Metrics: L1, Average Keypoint Distance (AKD), Missing Keypoint Rate (MKR), Average Euclidean Distance (AED).
- Video Reconstruction:
 - Significant improvements in motion-related metrics.
 - Our model obtains a pose closer to the real image.
 - Qualitative results show more accurate large displacement motion estimation.
 - Note: May lead to some loss of appearance information and blurring in interpolated images, especially with backgrounds.

Quantitative Comparison: Video Reconstruction

	Tai-Chi-HD		Fashion			UvA-Nemo			TedTalks			
	L_1	(AKD, MKR)	AED	L_1	(AKD, MKR)	AED	L_1	AKD	AED	L_1	(AKD, MKR)	AED
X2Face	0.080	(17.65, 0.109)	0.270	-	-	-	0.031	3.539	0.221	-	-	-
FOMM	0.057	(6.65, 0.036)	0.172	0.013	(1.131, 0.006)	0.059	0.021	1.408	0.067	0.033	(7.07, 0.014)	0.163
MRAA	0.048	(5.41, 0.025)	0.149	-	-	-	0.017	1.323	0.060	0.026	(3.75, 0.007)	0.114
DAM	0.044	(4.79, 0.021)	0.146	0.011	(1.041, 0.004)	0.054	-	Ē	-	-	-	-
MTIA	0.045	(4.67, 0.021)	0.148	-	20	121	12	-	-	0.026	(3.46, 0.007)	0.113
TPSMM	0.045	(4.57, 0.018)	0.151	0.011	(0.845, 0.005)	0.056	0.011	1.177	0.050	0.027	(3.39, 0.007)	0.124
CPABMM	0.041	(4.61, 0.021)	0.117	-		-	-	-	-	0.022	(3.21, 0.008)	0.085
Ours	0.047	(4.21, 0.014)	0.157	0.011	(0.800, 0.004)	0.056	0.010	1.155	0.051	0.028	(3.15, 0.005)	0.136
Ours-V2	0.046	(3.67, 0.013)	0.149	0.011	(0.771, 0.004)	0.058	0.010	0.853	0.050	-	-	-

Table: Quantitative comparison of video reconstruction task on four diferent datasets.

Qualitative Comparison

Figure: Some bad comparison methods cases on the Tai-chi-HD dataset, while our method shows high quality on video reconstruction task.

Qualitative Comparison

Figure: Qualitative comparison with comparison methods on image animation task TaiChiHD (above), Fashion (below).

Ablation Study Results

	L1	(AKD, MKR)	AED
TPSMM	0.045	(4.57, 0.018)	0.151
		(5.56, 0.026)	
+Model1, BT (Model2)	0.048	(4.31, 0.016)	0.158
+Model2, L_{app} , L_{struc} (Ours)	0.047	(4.21,0.014)	0.157

Table: Ablating the key components of the proposed method. INT is denoted as adding an unsupervised anytime interpolation method, and BT is denoted as adding a bidirectional training strategy.

Ablation Studies

Tai-Chi-HD dataset:

- Adding unsupervised anytime interpolation alone (Model1) decreases performance without constraints, leading to poor interpolated image generation.
- Adding bidirectional training strategy (Model2) improves performance by constraining interpolated images.
- Full model (Ours) with appearance and structure consistency losses shows optimal results in motion-related metrics.

Method Extension (Ours-V2)

- Extended to multi-view tasks using source image and optimally interpolated images for fused deformation features.
- Achieves significant improvements on most datasets, especially in AKD.
- Significantly improves appearance of generated images.

Conclusion

- Proposed a large displacement motion transfer model based on unsupervised anytime interpolation.
- Decomposes large displacement motion into small displacement motions, improving motion estimation accuracy.
- Introduced a bidirectional training strategy with ViT-based constraints (appearance and structure consistency) to narrow the solution space and improve interpolated image quality.
- Experiments show significant improvements in motion-related metrics compared to state-of-the-art methods.