# Symmetry-Robust 3D Orientation Estimation







Massachusetts Institute of Technology



David Benhaim Paul Zhang



## The problem.

On the job market soon!



Estimate a shape's *orientation:* its side, up, and front axes.

Learn an orienter function:

 $f: \mathcal{S} \to SO(3)$ 

Maps shapes to predicted orientations  $\hat{\Omega}_S$ 

Key challenge:

If a shape has rotational symmetries, then its orienter map is one-to-many – not a function!



Figure 4: The solution  $f^*(S)$  to Problem 2 evaluated at the bench shape S may be any rotation about the y-axis.

One symmetry  $\rightarrow$  infinitely many bad solutions to naive  $L_2$  regression!

### Our solution.

$$\min_{f: \mathcal{S} \to SO(3)} \mathbb{E}_{\substack{R \sim U(SO(3)) \\ (S, \Omega_S) \in \mathcal{D}}} \left[ \min_{Q \in \hat{\mathcal{R}}_S} \|f(RS) - RQ\Omega_S\|_F^2 \right]$$

First stage: Quotient regression

Sends  $f(RS) \approx \Omega_{RS}$  up to a symmetry  $Q \in \hat{\mathcal{R}_S}$  We quotient by cube flips.



Correctly oriented outputs – up to a cube flip  $Q^* \in \hat{\mathcal{R}}_S$ 

$$f^*(RS) = RQ^*\Omega_S$$

Second stage: Find the cube flip by solving a <u>discrete classification</u> problem.



Recovers the correct orientation up to a symmetry of the shape.

#### Results.



- Recovers full orientations upright and front-facing.
  - 64.6% lower error rate vs. prior SOTA on up-axis prediction.
- Works on all of Shapenet not just select classes.

