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Generative modeling on manifolds
Given: 

• a 𝑑-dimensional manifold ℳ
• dataset 𝐷 ⊆ ℳ sampled from a probability distribution 𝜋 on ℳ.

Goal: Train a model to generate new samples    (approximately) from 𝜋

Many applications:

• Drug discovery: molecules with bond angles constrained         

to 𝑑-torus 𝕋𝑑

• Quantum physics: time-evolution operators of quantum  

systems represented by 𝑛 ×  𝑛 complex unitary matrices on 

unitary group U(𝑛) (manifold dimension 𝑑 =
𝑛 𝑛−1

2
≈ 𝑛2)

• Robotics: Robotic configurations constrained to Torus or special 

orthogonal group SO(𝑛) of 𝑛 ×  𝑛 orthogonal matrices
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3𝑝𝑡 𝑥, 𝑦 ≔
“ℙ”(𝐵𝑡 = 𝑦|𝐵0 = 𝑥)

𝐵𝑡 (Brownian 

motion on ℳ)

ℳ

Previous work
Diffusion generative models in Euclidean space ℝ𝑑 (e.g., [Ho, Jain, Abbeel ‘20], [Rombach, Blattmann, 

Lorenz, Esser, Ommer ‘22])
• Very successful generating data in Euclidean space (e.g., images, videos)
• Fast training runtime: O(𝑑) arithmetic operations + O(1) model gradient evaluations 

per-iteration 

Many works provide diffusion models constrained to non-Euclidean Riemannian manifolds, e.g.
• Riemannian Score-Based Generative Models (RSGM) [De Bortoli, Mathieu, Hutchinson, Thornton, Teh, Doucet ‘22], 

• Riemannian Diffusion (RDM) [Huang, Aghajohari, Bose, Panangaden, Courville ‘22], 

• Scaling Riemannian Diffusion (SCRD) [Lou, Xu, Farris, Ermon ‘23], 

• Trivialized Momentum Diffusion (TDM) [Zhu, Chen, Kong, Theodorou, Tao ‘25]

Generate samples directly on manifold, no distortion from post-processing projections

Large gap between per-iteration training runtime of Euclidean & manifold diffusions:

exp(𝑑) arithmetic operations or O(d) model gradient evaluations for manifold diffusions

Training objective relies on manifold’s heat kernel 𝑝𝑡.

In Euclidean case, heat kernel is Gaussian.  On manifolds with 

curvature, in general, heat kernel has no closed-form expression!

For data constrained to non-Euclidean manifold, can 
generate in Euclidean space & project onto manifold 

Degrades sample quality due to distortions introduced 
by projection mapping



Our contributions
We consider the setting where the 𝑑-dimensional manifold ℳ is a symmetric-space, such 

as a torus, sphere, special orthogonal group SO(𝑛), or Unitary group U(𝑛)  (d ≈ 𝑛2)

Algorithm Grad. Eval. Arith. Ops.

RSGM, SCRD 1 2𝑑

RDM, RSGM, TDM 𝑑 poly(𝑑)

This paper 1 𝑑1.17

Improves on previous manifold diffusion 

algorithms, which require exp(𝑑) arith. ops. 

or O(𝑑) model gradient evaluations on 

symmetric manifolds such as SO(𝑛), U(𝑛)

Theoretical guarantees for sampling: Given an 𝜀-minimizer of our training algorithm’s 

objective function for a target distribution 𝜋 on ℳ. Our sampling algorithm generates 

samples within ෨𝑂 𝜀 ×  poly 𝑑  total variation of 𝜋, in poly(𝑑) arithmetic operations.

Symmetry property: Each 𝑧 ∈ ℝ𝑚 parametrizes as 𝑧 ≡ 𝑧 𝑈, Λ ,  𝑈 = 𝜑(𝑧)
Average-case Lipschitzness: 𝜑 is 𝐿-Lipschitz on subset of ℝ𝑚 containing a Brownian 

motion w.h.p.                                e.g., for U 𝑛 , we show 𝐿 ≤ 𝑂(𝑑2)

ℳ has a discontinuous projection 𝜑: ℝ𝑚 → ℳ, 𝑚 = 𝑂(𝑑), satisfying a symmetry property

Algorithm: We give a new diffusion model on these manifolds with training objective 

computable in near-linear (≤ 𝑂 𝑑1.17 ) arith. ops. + 𝑂(1) gradient evaluations

Improves on sampling guarantees of, e.g., RSGM, which may not be polynomial-in-d

Empirical results:
Runtime: Our model trains faster per-iteration than previous manifold diffusions on 

SO 𝑛 , U(𝑛), staying within factor of 3 of Euclidean diffusions even in high dimensions

Sample quality: Improves visual quality, C2ST scores of generated samples when trained  

on synthetic datasets on torus, SO(𝑛), U 𝑛 . Improvements increase with dimension.



Algorithm derivation

Key idea: Introduce diffusion with spatially-varying 

covariance, to efficiently handle manifold’s curvature

• Covariance term allows diffusion to be a projection        

X𝑡 = 𝜑(𝑍𝑡) of Euclidean Brownian motion 𝑍𝑡 onto 

manifold ℳ even when ℳ has non-zero curvature 𝑋𝑡 = 𝜑 𝑍𝑡

𝑋0 ∼ 𝜋

Manifold ℳ

Forward diffusion:

Reverse diffusion: 𝑌𝑡 = 𝑋𝑇−𝑡 (time-reversal of forward diffusion on manifold)

SDE expression for 𝑌𝑡 directly leads to an efficient training objective for 𝑓, 𝑔 

Expression for drift 𝑓 and covariance 𝑔 in SDE for 𝑌𝑡 can be derived as a projection of 

SDE of time-reversal 𝐻𝑡 of Euclidean Brownian motion, via Ito’s Lemma:

• No need to compute manifold’s heat Kernel (only Euclidean Gaussian heat Kernel)

• Projection 𝜑 can be computed in 𝑂 𝑑1.17  arithmetic operations, e.g. via SVD

Euclidean Brownian Motion

“inverse” 

map 𝜓

𝑍𝑡

𝑍0 = 𝜓(𝑍0)

Projected Diffusion

d𝑌𝑡 = 𝑓 𝑌𝑡, 𝑡 d𝑡 + 𝑔 𝑌𝑡, 𝑡 d𝐵𝑡 = 𝔼 ∇𝜑 𝐻𝑡
⊤ + d𝐻𝑡

⊤∇2𝜑 𝐻𝑡 d𝐻𝑡| 𝜑 𝐻𝑡 = 𝑌𝑡

Training:

Starting from a sample 𝑌0 ∼ 𝜑(𝑁 0, 𝐼 ), removes noise to generate (approximate) samples from 𝜋

• Choose projection map 𝜑 s.t. it is efficiently computable 

      e.g., for SO(𝑛), U(𝑛), 𝜑 𝑍 = 𝑈 where 𝑈Λ𝑈∗ SVD of 𝑍 + 𝑍∗

Forward diffusion adds noise to data until it is (nearly) distributed as 

the projection 𝜑(𝑁(0, 𝐼𝑑)) onto ℳ of a standard Gaussian



Proof highlights
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Previous diffusion models use Girsanov transforms to bound accuracy of generated samples

Girsanov transforms do not apply to our diffusion as it has spatially-varying covariance!
Instead, use optimal transport: construct coupling between “ideal” diffusion d𝑌𝑡 = 𝑓∗ 𝑌𝑡 , 𝑡 d𝑡 +

g∗ 𝑌𝑡 , 𝑡 dB𝑡 and a diffusion ෠𝑌𝑡 with 𝑓∗, 𝑔∗ replaced with our model መ𝑓, ො𝑔 trained within error 𝜀. 

Applying curvature comparison theorem [Rauch, ’51] to the coupled diffusions, we bound 

their Wasserstein distance 𝑊2
෠𝑌𝑡, 𝑌𝑡 :

                 𝑊2
෠𝑌𝑡 , 𝑌𝑡 ≤ 𝑊2

෠𝑌0, 𝑌0 + 𝜀 𝑒𝑐𝑡,          if 𝑓∗, 𝑔∗ c-Lipschitz on all of ℳ

Projection 𝜑 is not in general Lipschitz! (e.g., on SO 𝑛 , U(n),  𝜑(𝑍) has singularities at 

points where eigenvalue gaps of 𝑍 + 𝑍∗ vanish)

Average-case 𝑳-Lipschitzness (stated here for U(𝑛)): There exists subset Ω𝑡 ⊆ ℝ𝑚 s.t. 

• Lispchitzness: first two derivatives of 𝜑 have operator norms ≤ 𝐿 on all of Ω𝑡

• Symmetry: indicator 𝟏Ω𝑡
𝑍  depends only on the eigenvalues of 𝑍 + 𝑍∗

• High probability set: Euclidean Brownian motion 𝑍𝑡 remains in Ω𝑡 w.h,p. for all t ∈ [0, 𝑇].

Use eigengap bounds from random matrix theory that say eigenvalues of 

matrix BM repel w.h.p. (e.g. [Anderson, Guionnet, Zeitouni ‘10], [M-V ‘24]) to show 𝜑 

is average-case 𝐿-Lipschitz, 𝐿 = 𝑂(𝑑2)

Average-case Lipschitzness of 𝜑 implies 𝑓∗, 𝑔∗ are poly(d)-Lipschitz on all of  𝓜:

                 𝑓∗ 𝑈, 𝑡 ∝ ∫ [∇𝜑 𝑈Λ𝑈∗ ⊤∇log pT−t 𝑈Λ𝑈∗ + ⋯ ] 𝟏Ω𝑡
𝑈Λ𝑈∗ dΛ

    Symmetry implies integrand depends only on Λ, not 𝑈, “smoothing over” singularities of 𝜑



Empirical results

Sampling accuracy

Training runtime

When using same network architecture and GPU 
hardware for all models,

• Our training time is significantly faster than 
previous manifold diffusions on U(𝑛), SO(𝑛)

When trained on quantum operator 

datasets on U 𝑛  and wrapped Gaussian 

datasets on the torus and SO 𝑛 ,

•  Except in very low dimensions, our 

model improves on the quality of 

generated samples over previous 

Euclidean and manifold diffusions

• Magnitude of runtime and quality 

improvements increases with dimension.

Per-iteration training time on U(𝑛) (seconds)

C2ST sample quality scores, and generated samples, on U(𝑛) 

Method 𝑛 = 𝟓 

(𝑑 = 10)
𝑛 = 50 

(𝑑 = 1225)

Euclidean 0.19 ± .01 0.21 ± .01

RSGM 1.22 ± .08 11.55 ± .31

TDM 1.07 ± .06 9.43 ± .23

This paper 𝟎. 𝟑𝟔±. 𝟎𝟎 𝟎. 𝟔𝟎±. 𝟎𝟏

• Runtime on torus, sphere, U(𝑛), and SO(𝑛) remains within small constant factor of 

Euclidean diffusion’s, nearly closing gap in training runtime with Euclidean diffusion.

Method 𝑛 = 𝟓 

(𝑑 = 10)
𝑛 = 𝟏𝟐 

(𝑑 = 𝟔𝟔)
𝑛 = 𝟏𝟓 

(𝑑 = 𝟏𝟎𝟓)

Euclidean . 𝟕𝟓 ±. 𝟎𝟒 .97 ± .04 1.00 ± .01

RSGM .92 ± .04 1.00 ± .02 1.00 ± .01

TDM .91 ± .02 1.00 ± .01 1.00 ± .01

This paper 0.80 ± .04 . 𝟖𝟖±. 𝟎𝟓 . 𝟗𝟎±. 𝟎𝟒



Conclusion
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Thanks! 

Introduced new diffusion on symmetric manifolds, with spatially-varying covariance 

Key idea: covariance allows diffusion to be projection from Euclidean space onto  

manifolds with non-zero curvature, bypassing computation of manifold’s heat kernel

Training runtime: trains in near-linear (𝑂 𝑑1.17 ) arithmetic operations + 𝑂(1) model 

gradient evaluations per iteration

• improves on runtime of previous manifold diffusions by exp(𝑑) arith. ops. or 

O(𝑑) gradient evaluations on symmetric manifolds such as SO(𝑛), U(𝑛)
• nearly closes gap with per-iteration runtime of Euclidean diffusions

Sampling guarantees: Manifold symmetries ensure reverse diffusion satisfies an 

“average-case” Lipschitz condition, ensuring accuracy & efficiency of sampling algorithm

  Improves on guarantees of previous manifold diffusions which may not be polynomial-in-d

Empirical results: Outperforms prior methods in training runtime and sample quality, on 

datasets on torus, SO(𝑛), U(𝑛). Magnitude of improvement increases with dimension.

Open problem: Can one extend our framework to more general manifolds?

Open problem: How to further tighten our theoretical sampling accuracy guarantees to 

generalize Euclidean diffusion guarantees?
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