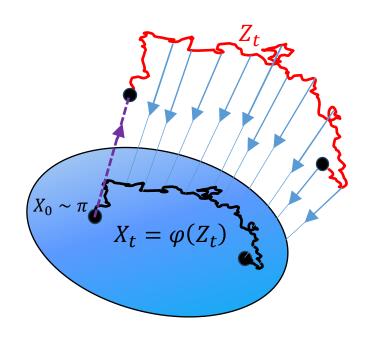
Efficient Diffusion Models for Symmetric Manifolds



Oren Mangoubi WPI Neil He Yale Nisheeth Vishnoi Yale

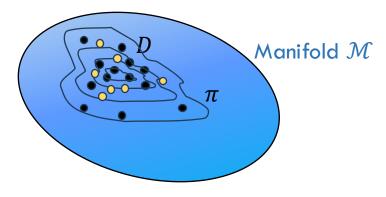
ICML 2025

Generative modeling on manifolds

Given:

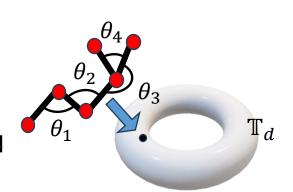
- ullet a d-dimensional manifold ${\mathcal M}$
- dataset $D \subseteq \mathcal{M}$ sampled from a probability distribution π on \mathcal{M} .

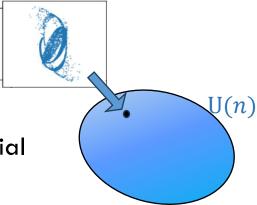
Goal: Train a model to generate new samples \circ (approximately) from π



Many applications:

- \bullet Drug discovery: molecules with bond angles constrained to $d\text{-torus }\mathbb{T}_d$
- Quantum physics: time-evolution operators of quantum systems represented by $n \times n$ complex unitary matrices on unitary group $\mathrm{U}(n)$ (manifold dimension $d=\frac{n(n-1)}{2}\approx n^2$)
- Robotics: Robotic configurations constrained to Torus or special orthogonal group SO(n) of $n \times n$ orthogonal matrices





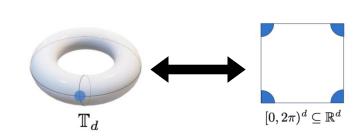
Previous work

Diffusion generative models in Euclidean space \mathbb{R}^d (e.g., [Ho, Jain, Abbeel '20], [Rombach, Blattmann, Lorenz, Esser, Ommer '22])

- Very successful generating data in Euclidean space (e.g., images, videos)
- Fast training runtime: O(d) arithmetic operations + O(1) model gradient evaluations per-iteration

For data constrained to non-Euclidean manifold, can generate in Euclidean space & project onto manifold

Degrades sample quality due to distortions introduced by projection mapping



Many works provide diffusion models constrained to non-Euclidean Riemannian manifolds, e.g.

- Riemannian Score-Based Generative Models (RSGM) [De Bortoli, Mathieu, Hutchinson, Thornton, Teh, Doucet '22],
- Riemannian Diffusion (RDM) [Huang, Aghajohari, Bose, Panangaden, Courville '22],
- Scaling Riemannian Diffusion (SCRD) [Lou, Xu, Farris, Ermon '23],
- Trivialized Momentum Diffusion (TDM) [Zhu, Chen, Kong, Theodorou, Tao '25]

Generate samples directly on manifold, no distortion from post-processing projections Large gap between per-iteration training runtime of Euclidean & manifold diffusions: $\exp(d)$ arithmetic operations or O(d) model gradient evaluations for manifold diffusions

Training objective relies on manifold's heat kernel p_t .

In Euclidean case, heat kernel is Gaussian. On manifolds with curvature, in general, heat kernel has no closed-form expression!

 $p_t(x,y) \coloneqq \mathcal{M}$ $\mathbb{P}^n(B_t = y|B_0 = x)$

 B_t (Brownian

Our contributions

symmetric manifolds such as SO(n), U(n)

We consider the setting where the d-dimensional manifold ${\mathcal M}$ is a symmetric-space, such as a torus, sphere, special orthogonal group SO(n), or Unitary group U(n) (d $\approx n^2$)

 ${\mathcal M}$ has a discontinuous projection $\varphi\colon {\mathbb R}^m o {\mathcal M}$, m=O(d) , satisfying a symmetry property

Algorithm: We give a new diffusion model on these manifolds with training objective computable in pear linear $I \in O(d^{1.17})$) with one $\pm O(1)$ avadient evaluations

computable in near-linear ($\leq O(a^{-1/2})$) arith. ops. + $O(1)$ gradient evaluations					
Improves on previous manifold diffusion	Algorithm	Grad. Eval.	Arith. Ops.		
algorithms, which require $\exp(d)$ arith. ops.	RSGM, SCRD	1	2^d		
or $\mathrm{O}(d)$ model gradient evaluations on	RDM, RSGM, TDM	d	poly(d)		

This paper

 $d^{1.17}$

, , , , , , , , , , , , , , , , , , , ,	$\in \mathbb{R}^m$ parametrizes as $z \equiv z(U, \Lambda)$, $U = \varphi(z)$	
Average-case Lipschitzness: φ is L -Lipschitz on subset of \mathbb{R}^m containing a Brownian		
motion w.h.p.	e.g., for $U(n)$, we show $L \leq O(d^2)$	
Theoretical guarantees for sam	pling: Given an ε -minimizer of our training algorithm's	

objective function for a target distribution π on \mathcal{M} . Our sampling algorithm generates samples within $\tilde{O}(\varepsilon \times \text{poly}(d))$ total variation of π , in poly(d) arithmetic operations.

Improves on sampling guarantees of, e.g., RSGM, which may not be polynomial-in-d

Empirical results: Runtime: Our model trains faster per-iteration than previous manifold diffusions on

SO(n), U(n), staying within factor of 3 of Euclidean diffusions even in high dimensions Sample quality: Improves visual quality, C2ST scores of generated samples when trained on synthetic datasets on torus, SO(n), U(n). Improvements increase with dimension.

Algorithm derivation

Forward diffusion:

Key idea: Introduce diffusion with *spatially-varying* covariance, to efficiently handle manifold's curvature

• Covariance term allows diffusion to be a projection $X_t = \varphi(Z_t)$ of Euclidean Brownian motion Z_t onto

manifold ${\mathcal M}$ even when ${\mathcal M}$ has non-zero curvature

• Choose projection map φ s.t. it is efficiently computable Projected Diffusion e.g., for SO(n), U(n), $\varphi(Z)=U$ where $U\Lambda U^*$ SVD of $Z+Z^*$

Forward diffusion adds noise to data until it is (nearly) distributed as the projection $\varphi(N(0,I_d))$ onto $\mathcal M$ of a standard Gaussian

Reverse diffusion: $Y_t = X_{T-t}$ (time-reversal of forward diffusion on manifold) Starting from a sample $Y_0 \sim \varphi(N(0,I))$, removes noise to generate (approximate) samples from π

Euclidean Brownian Motion Z_t

 $Z_0 = \psi(Z_0)$

"inverse"

Manifold ${\mathcal M}$

map ψ

Training:

Expression for drift f and covariance g in SDE for Y_t can be derived as a projection of

SDE of time-reversal
$$H_t$$
 of Euclidean Brownian motion, via Ito's Lemma:
$$\mathrm{d}Y_t = f(Y_t,t)\mathrm{d}t + g(Y_t,t)\mathrm{d}B_t = \mathbb{E}\left[\left(\nabla\varphi(H_t)^\top + \mathrm{d}H_t^\top\nabla^2\varphi(H_t)\right)\mathrm{d}H_t | \varphi(H_t) = Y_t\right]$$

SDE expression for Y_t directly leads to an efficient training objective for f, g

- No need to compute manifold's heat Kernel (only Euclidean Gaussian heat Kernel)
- ullet Projection arphi can be computed in $O(d^{1.17})$ arithmetic operations, e.g. via SVD

Proof highlights

Previous diffusion models use Girsanov transforms to bound accuracy of generated samples

Girsanov transforms do not apply to our diffusion as it has spatially-varying covariance.

Girsanov transforms do not apply to our diffusion as it has spatially-varying covariance! Instead, use optimal transport: construct coupling between "ideal" diffusion $dY_t = f^*(Y_t, t)dt + g^*(Y_t, t)dB_t$ and a diffusion \hat{Y}_t with f^* , g^* replaced with our model \hat{f} , \hat{g} trained within error ε .

Applying curvature comparison theorem [Rauch, '51] to the coupled diffusions, we bound their Wasserstein distance $W_2(\hat{Y}_t, Y_t)$:

$$W_2(\hat{Y}_t, Y_t) \leq (W_2(\hat{Y}_0, Y_0) + \varepsilon)e^{ct}, \qquad \text{if } f^*, g^* \text{ c-Lipschitz on all of } \mathcal{M}$$

Projection φ is not in general Lipschitz! (e.g., on SO(n), U(n), $\varphi(Z)$ has singularities at points where eigenvalue gaps of $Z+Z^*$ vanish)

Average-case L-Lipschitzness (stated here for U(n)): There exists subset $\Omega_t \subseteq \mathbb{R}^m$ s.t.

- Lispchitzness: first two derivatives of φ have operator norms $\leq L$ on all of Ω_t
- Symmetry: indicator 1_{Ωt}(Z) depends only on the eigenvalues of Z + Z*
 High probability set: Euclidean Brownian motion Z_t remains in Ω_t w.h,p. for all t ∈ [0, T].
- Use eigengap bounds from random matrix theory that say eigenvalues of

matrix BM repel w.h.p. (e.g. [Anderson, Guionnet, Zeitouni '10], [M-V '24]) to show
$$\varphi$$
 is average-case L -Lipschitz, $L = O(d^2)$

Average-case Lipschitzness of φ implies f^* , g^* are poly(d)-Lipschitz **on all of** \mathcal{M} : $f^*(U,t) \propto \int \left[\nabla \varphi(U\Lambda U^*)^\top \nabla \log p_{\mathrm{T-t}}(U\Lambda U^*) + \cdots\right] \mathbf{1}_{\Omega_t}(U\Lambda U^*) \mathrm{d}\Lambda$

Symmetry implies integrand depends only on Λ , not U, "smoothing over" singularities of φ

Empirical results

Training runtime

When using same network architecture and GPU hardware for all models,

 Our training time is significantly faster than previous manifold diffusions on U(n), SO(n)

Per-iteration training time on U(n) (seconds)

Method	n = 5 $(d = 10)$	n = 50 $(d = 1225)$
Euclidean	$0.19 \pm .01$	$0.21 \pm .01$
RSGM	$1.22 \pm .08$	$11.55 \pm .31$
TDM	$1.07 \pm .06$	$9.43 \pm .23$
This paper	$0.36 \pm .00$	$0.60\pm.01$

ullet Runtime on torus, sphere, $\mathrm{U}(n)$, and $\mathrm{SO}(n)$ remains within small constant factor of Euclidean diffusion's, nearly closing gap in training runtime with Euclidean diffusion.

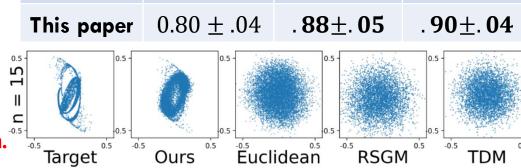
Sampling accuracy

Wh date date

- mod gen Euc
- Magnitude of runtime and quality improvements increases with dimension.

C2ST sample quality scores, and generated samples, on U(n)

hen trained on quantum operator asets on $\mathrm{U}(n)$ and wrapped Gaussian	Method		n = 12 $(d = 66)$	n = 15 (d = 105)
tasets on the torus and $SO(n)$,	Euclidean	$.75\pm .04$	$.97 \pm .04$	$1.00 \pm .01$
Except in very low dimensions, our	RSGM	$.92 \pm .04$	$1.00 \pm .02$	$1.00 \pm .01$
odel improves on the quality of	TDM	$.91 \pm .02$	$1.00 \pm .01$	$1.00 \pm .01$
nerated samples over previous clidean and manifold diffusions	This paper	$0.80 \pm .04$	$.88 \!\pm\! .05$	$.90\pm.04$
ciiaean ana manitola alttusions				



Conclusion

Introduced new diffusion on symmetric manifolds, with spatially-varying covariance

Key idea: covariance allows diffusion to be projection from Euclidean space onto manifolds with non-zero curvature, bypassing computation of manifold's heat kernel

Training runtime: trains in near-linear ($O(d^{1.17})$) arithmetic operations + O(1) model gradient evaluations per iteration

- improves on runtime of previous manifold diffusions by $\exp(d)$ arith. ops. or $\mathrm{O}(d)$ gradient evaluations on symmetric manifolds such as $\mathrm{SO}(n)$, $\mathrm{U}(n)$
- nearly closes gap with per-iteration runtime of Euclidean diffusions

Sampling guarantees: Manifold symmetries ensure reverse diffusion satisfies an "average-case" Lipschitz condition, ensuring accuracy & efficiency of sampling algorithm Improves on guarantees of previous manifold diffusions which may not be polynomial-in-d

Empirical results: Outperforms prior methods in training runtime and sample quality, on datasets on torus, SO(n), U(n). Magnitude of improvement increases with dimension.

Open problem: Can one extend our framework to more general manifolds?

Open problem: How to further tighten our theoretical sampling accuracy guarantees to generalize Euclidean diffusion guarantees?

Thanks!