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Motivation & Problem Definition
▶ Goal: Find a policy π that maximizes cumulative rewards while respecting

instantaneous safety constraints at every step.

Mathematical Formulation:

max
π

V π(s0) = Eπ

[
H∑

h=1

rh(sh, ah)

]
Subject to instantaneous safety constraints:

ch(sh, ah) ≤ τ, for every step h and all episodes.

Examples:

▶ Autonomous Driving: Immediate collision avoidance at every steering or
acceleration decision.

▶ Robotics: Instantaneous obstacle avoidance at each robotic arm movement.

▶ Healthcare: Immediate adherence to safe dosage limits for medication.



State of the Art & Proof Gap
▶ SLUCB-QVI [Amani et al. 2021]: claims Õ

(
(1 + 1

τ )
√
d3H4K

)
regret under

star-convex safety.

▶ Proof not correct: Uses an invalid covering-number bound from unconstrained
RL; see details in Section 5.1.

▶ Star-convexity isn’t enough: Real-world problems such as autonomous driving
and robotics often induce non-star-convex or highly irregular safe decision
spaces (e.g., disjoint regions due to obstacles or kinematic constraints).

Star-Convex Set (all rays from center stay

inside)

Non-Star-Convex Set (obstacle creates a

hole)



Our Contributions

Objective–Constraint Decomposition (Star-Convex Case)

▶ We introduce a novel technique, OCD, to bound the covering number in
constrained RL problems under star-convexity.

▶ Impact: Resolves Amani et al.’s proof gap; adds complexity factor O(
√
log( 1τ ))

vs. unconstrained RL.

Lemma 5.3: In non-star-convex problems, the covering number can become arbitrarily
large, and OCD (and other star-convex methods) are no longer sufficient.

NCS-LSVI — Two-Phase Algorithm for Non-Star-Convexity

▶ We develop a new algorithm, NCS-LSVI, that enables sublinear regret in
non-star-convex environments.

▶ Theorem 5.4: Regret = O(
√
K ) +O

(
log(K)
ε2ι2

)



Our Method: OCD for Star-Convexity, NCS-LSVI Beyond

Why ordinary covering arguments fail

▶ Unconstrained RL: V k
h (s) = maxa∈AQk

h (s, a) — the action set A is fixed.

▶ Constrained RL: V k
h (s) = maxa∈Âk

h(s)
Qk

h (s, a), where Âk
h(s) is data-dependent.

Our Decomposition Strategy (OCD)

▶ To bound |V1(s)− V2(s)|, we introduce V3 using the same Q-function as V1 and
the same feasible set as V2:

|V1(s)− V2(s)| ≤ |V1(s)− V3(s)|︸ ︷︷ ︸
objective difference

+ |V2(s)− V3(s)|︸ ︷︷ ︸
constraint difference

▶ Non-Star-Convex Spaces: Without star-convexity, this strategy fails; NCS-LSVI
adds an exploration phase to restore provable bounds.

▶ Initial exploration step in NCS-LSVI reduces uncertainty about constraints,
making OCD valid again.



Conclusion & Future Research

Key Takeaways

▶ Geometry matters: Our work highlights the pivotal role of the decision space’s
geometry in shaping the complexity of safe RL.

▶ Beyond unconstrained RL: Instantaneous hard constraints demand new tools
(e.g., OCD, NCS-LSVI) to keep covering numbers tight.

Future Directions

▶ Regret bound under Local Point Assumption depends on 1
ε2ι2

; whether this is
fundamental remains open.

▶ Future work: extend beyond linear MDPs to handle deep RL with nonlinear
feature spaces.

▶ Another direction: relax the Local Point Assumption to enable safety and low
regret in complex environments.


