Aggregation Buffer:
Revisiting DropEdge with a New Parameter Block
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Sub-optimalites of GNNs : Structural Inconsistencies

1) Degree Bias

GNNs perform worse on low-degree nodes than on high-degree nodes, especially in homophilous graphs.

Average Accuracy on High- vs. Low-Degree Nodes (Top/Bottom 33%)
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2) Structural Disparity (Mao et al., 2024)

GNNs exhibit poor accuracy on nodes whose neighbors have conflicting structural properties, such as
heterophilous neighbors in homophilous graphs, or vice versa.

We can frame several open problems in GNNs under the theme of “structural inconsistency’.




Random Dropping in ML

Common approaches to enhance robustness against input variations is training with random dropping.

DropOut CutOut DropEdge
(Srivastava et al., 2014) (DeVries, 2017) (Rong et al., 2019)

However, in the graph domain, the performance gain by DropEdge is limited in practice, and DropEdge is often
excluded from the standard hyperparameter search space of GNNs in benchmark studies.

Why hasn’t DropEdge become a default in GNNs like other data augmentations in different domains?




Revisiting DropEdge : Objective Shift

For each node 7, the edge removal operation in DropEdge can be interpreted as transforming the rooted subgraph
Ui, centered on node1, into a reduced rooted subgraph, denoted as g;.

L(0) = Dxr(P(yilG:)1Q(wilG:)) —>  L(6) = Dxr(P(w:1G:)|Q(wilG:))

*P - True Distribution, Q - Modeled Distribution by GNNs



Revisiting DropEdge : Bias-robustness Tradeoff

The shifted objective L can be decomposed as follows:

L£(6) = Dxr,(P(y:1G:)1Q(y:1G:))+Ep[log Q(y:|G:) — log Q(v;|Gs)]

By assuming, () ~ P

v

Lq(0) = Dk (P(y:lG:)||Q(wilGi)+ DxL(Q(y:lG:) 1 Q(y:]G:))
- —~— /L —— )
Bias (Standard objective) Robustness (Structural consistency)

The second term works as a regularizer, promoting consistency across different reduced rooted subgraphs.
Finding an optimal balance between bias and robusiness is key to maximizing test performance.

Training with DropEdge is expected to improve robustness against structural inconsistency.




Unexpected Failure of DropEdge

In other domains, small perturbations of data do not significantly interfere with the primary learning objective .

*Accuracy and loss terms on test data during the training of a GCN at PubMed
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However, in GNNs trained with DropEdge, optimizing robustness immediately increases the bias term on test
data, preventing sufficient robustness to be achieved.

However, in practice, robustness is not effectively optimized, even when training with DropEdge.



Reason of the Failure : Core Limitations of GNNs

Robustness term in EQ can be optimized only when a GNN is able to produce similar outputs from different
inputs—particularly for varying adjacency matrices, such as A and A.

Definition 3.3 (Discrepancy bound). Let H {l) and H 2(l) be the outputs of the [-th layer of a network f given different
inputs H 1(1—1) and H 2(l_1). The discrepancy bound of f at the [-th layer is a constant C', such that

difference in outputs HI—I{” — I—Iz(l)||2 < CHI—Il(l_l) — I—IQ(l_l)Hg, difference in inputs

where C' is independent of the specific inputs.

Theorem 3.9. Under the same conditions as Theorem 3.8, the discrepancy of a GCN at layer [ is bounded as
|HY — HP |, < |HEY — HY||, + C,,  uncontrollable term

|2, and A is the normalized adjacency matrices of A.

where Cl — LJ“W(DHQ, Cg — Cl‘V‘H}il — }ig

Robustness remains unoptimizable due to GNNs aggregation operation, not DropEdge.




Achieving Edge-robustness

“optimize robustness separately
“fix right after where discrepancy arises” as a post-processing”

Propose an aggregation buffer (AGGg), a new parameter block added to each layer of a frozen trained GNNs,
aims to resolve discrepancies caused by the aggregation operation.

H{ = AGGOHD, A) + AGGY (H-D_ A)

\ J J
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Aggregation Buffer resolves discrepancy by modifying the output of aggregation.




Essential Conditions of AGGg

C1: Edge-Awareness. When the adjacency matrix A is

perturbed to A, AGGp should produce distinct outputs to
compensate for structural changes:

AGGY(A) # AGGY (A).

C2: Stability. For any perturbed adjacency matrix AcC A
created by random edge dropping, AGGp should produce
outputs with a smaller deviation from the original output

when given A, compared to when given A:
|AGGH (A)[lr < [AGGH (A)]e.

When C1 is not satisfied
Ex) Residual Connection, JK-net

l ~
HY Y HY

Discrepancy from adjacency
changes remains unresolved

Trained knowledge is
unnecessarily altered

When C2 is not satisfied When both C1, C2 satisfied
Ex) Aggregations in GNNs l i
iy A
N &. /

Reduce discrepancy while
preserving learned knowledge




Train AGGg with DropEdge

We train the AGGgz to minimize an objective function, robustness-controlled loss, which has a few adjustments
from the objective induced from the DropEdge.

Lq(0) = Dxi(P(y:|G:)||Q(w:]Gi))+
Dx1(Q(yi|G:)|Q(yilG:))

By assuming, () =~ P and reformulate, ) — Qg

v

Lrc(0B) = |V1m| > icve. DrL(Q(v:|G:)|| QB (y:]G:i)) +
A7 Yiev Dxu(@Qs(9ilG:) QB (4:lG:))
— Ebias (QB) + A Erobust (QB)

* N\ is balancing hyper-parameter

Aggregation buffer is trained with DropEdge and effectively optimizes edge-robustness.




Experiments Setting

We use a two-layer GCN and report results averaged over ten runs with different splits. Hyper-parameters are
selected via grid search based on validation accuracy from the first five runs.

Node Classification Datasets (12)

Cora Citeseer PubMed Wiki-CS Photo Computer CS Physics Arxiv Actor Squirrel Chameleon
# nodes 2,708 3, 327 19,717 11,701 7,650 13,752 18, 333 34,493 169, 343 7,600 2,334 890
# edges 10, 556 9, 228 88,651 431,726 238,162 491, 722 163,788 495,924 1,166,243 33,391 93,996 18, 598
# features 1,433 3,703 500 300 745 767 6, 805 8,415 128 932 2,089 2,325
# classes 7 6 3 10 8 10 15 5} 40 5} 5 5!
Homophily Ratio  0.8100 0.7355 0.8024 0.6543 0.8272 0.7772 0.8081 0.9314 0.6542 0.2167 0.2072 0.2361

Baselines (7)
MLP, GCN, DropEdge(2019), DropNode(2020), DropMessage(2023), TUNEUP(2023), GraphPatcher(2024)
_/

\\ _J
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Random Dropping Methods in Graph Degree Bias Methods




Table 1. Accuracy (%) of all models for test nodes grouped by degree. Head nodes refer to the top 33% of nodes by degree, while tail
nodes refer to the bottom 33%. Bold values indicate the best performance, and underlined values indicate the second-best performance.
Standard deviations are shown as subscripts. Our GCN g achieves at least the second-best in 31 out of 36 settings.

Method Cora Citeseer PubMed Wiki—-CS A.Photo A.Computer CS Physics Arxiv Actor Squirrel Chameleon
OVERALL PERFORMANCE
MLP 54.86i1_21 65-55i[}.75 84.62:|:D_23 75-98i[}.51 85.97;|;{].81 Sﬂ.gli[}_dm 93'55iﬂ.18 95-Dgi[}.12 56-41:|:ﬂ_14 34.86iu_97 32-55i1_51 32-10;|;3_1{]
GCN 83.44.11 44 72.4540.80 86.4810.17 80.26+0.34 92.2111 36 88.24 .63 91.85+0.29 95.1840.17  71.80+0.10 30.16+0.73 41.67+2.42 40.1944.29
DTDpEdgE 83.27:|:1_55 72.29i[}.ﬁﬂ 85.47:|:D_21 80.22i[}.55 92.14;&1.42 SS.DSil.DB gl.glig_lﬁ 95.13i[}.16 71-733:(]_21 Qg-gﬁin_gz 38.40i2_57 40'51:&3.38
DropNode 83.6541 83 72.204067  86.95+0.18 80.114p.61 91.8941.21 88.17+0.40 91.934028  95.1140.16 71.7240.16 29.07+0.03 38.0142.00 39.7442 79
DropMessage | 83.4511 56 72.44 1 ¢ 76 86.5610.16 80.3040.37 92.1341 56 88.92.40.44 92.0840.21 95.144 .18 71.9310.20 29.6211 05 38.7543.34 40.484 3 o7
TUNEUP 83.59+1 26 73.00+0.78 86.43+0.36 80.564+0.47 92.11+1 37 88.1410.95 90.89+0.45 94.5140.25 71.814+0.15 28.9541.48 41.4945 65 40.24 4+ 4 24
GI'ElphPEltChEI' 83.57:|:1_33 72.22:|:D.T3 86.2 lig_gg 80.64:|:D_51 QZ.SQ:ED.ET 88.49:|:D.T1 91'74:&[}.25 95.25:|:D.24 72.06:|:g_n5 28.07:|:D_5? 41.89:|:2_4g 40.35:|:4_11
GCNB(OLII'S) 84.84:&1_39 73.32:|:.[}_35 87.56:|:(]_27 80.75;|;{}.42 92.44;|;1.42 88.76;|;[}.65 93.54:|:[}_3? 95.79:|:[}_17 72.43:|:D.16 30.55;&[}_34 42.39&2_19 40.96:|:4_33
ACCURACY ON HEAD NODES (HIGH—DE‘.GREE)
MLP | 65.864 1.56 70.99 1.33 84.704 0.32 80.06 L0.83 88.584 1.12 86.09 .68 94.08 F0.24 97.50 F0.14 63.934 0.17 34.27 . 1.42 25.804 3.72 29.74. 3.68

1) Overall Performance

 Aggregation Buffer is the only method that consistently and significantly improves GCN performance across
all datasets—achieving the best accuracy on 9 and second-best on 3 datasets.

- While random dropping methods fail to reliably outperform base GCN, our method—despite also using
DropEdge—succeeds, reinforcing our claim that the limitation is due to the GNNs' inductive bias.



2) Addressing Degree Bias

« Aggregation Buffer effectively reduces degree bias, achieving substantial gains on low-degree nodes—
ranking at least second-best on tail nodes in 10 datasets and head nodes in 9.
- Degree-bias methods often struggle in heterophilous graphs due to its reversed bias trends. Our method still
improves in these cases, highlighting edge-robustness is a broader and more reliable approach.

IUNEUP 89.0941 926 (00040 78 80.4040.36 3U.00+0.47 U2.1141 37 838.1410.95 U0.8Y40.45 J4.01l+0.25 (1.81+0.15 28.9041 .48 41.49492 65 40.24 44 24
Gl'ﬂphPH.tChEll' | 83.5?:1_33 ?2.22:&;}173 86.2 ]-:{}.23 8{].64:&;}151 92.89:&9_57 88.49:&{}‘?1 91.74:(}‘25 95.255:{}‘2.1 ?2.{]61{;_{;5 28.0?:&{}‘57 41.8912_45} 40.35:4_11
GCNB(OLII'S) 84.84&1_39 73.32:|:.[}_g5 87.56:|:(]_27 80.75;|:{}.42 92.44;|:1.42 BB.TG;I:[}.EE 93.54:|:[}_3? 95.79:|:[}_17 72.43:|:D.16 30.55;&[}_34 42.39:|:2_19 40.96:|:4_33
ACCURACY ON HEAD NODES (HIGH-DEGREE)
MLP 65.86+156  70.994133 84.70+032 80.061083  88.58+1.12 86.0940.68 94.081024 97504014 63.93+017 34.274+142 25.80+3.72 29.7413 63
GCN 84.704160  79.104097 87.81ig3s 85.134056  94.854201 90.7240.75 093.15409¢  97.641012 80.81ig10 27.6311390 35.12.3¢¢ 36.51.416 92
DTDpEdgE 84.74:|:2_{]1 78.92i[}.?8 87.77;|;D.38 84.99i[}.3{] 94.50;|;1.75 Qﬂ.lﬂil.z? 93. 14;|:D.13 QT-SIiD.ll 80.67:|:{]_25 27.51i2_35 33.64:|:4_93 37.58:|:5_54
DropNode 84.8212 47 79.0141 34 87.80+034  85.0240.55 91.8941.21 90.53+0.58 93.1940.23  97.5940.11 80.73+0.25 26.6241 15 32.33+5.00 30.92.6.81
DropMessage | 84.861160  79.3341.10 87.841045 84.961042  94.6215 94 91.014¢.75 93.28.4020  97.5710.11 80.77+025 27554170 30.42.4q,4  38.85.i747
TUNEUP 84.5811.46 79.431083 87.78+054 85.351051 94.73+1095 90.6241.12 92.1240.40  97.2640.15 80.744+0.18 26.5641 43 34.8513.81 30.8245 38
GraphPatcher | 85.21. 56 79.00L0.66 87.6610.47 85.224065 95.2810.61 91.51.0.69 93.2510.42 97461020 80.891906 26.8511385 35.724441 36.40+4.99
GCNp(Ours) | 85.824131 79414000 88.144060 85.041056 94.844205 90.70+0.80 93.87+0.26 97.7010.11 80.85+0.13  27.651148  35.38+4.28 37.68+7.39
ACCURACY ON TAIL NODES (LDW-DEGREE}
MLP 63.20+1.36  60.274+1.42 84.30+0.43 73.024102 81.9140.90 75.5140.73 92964028  92.7641021 49.714010 34471134 35.594333 28.94 15 09
GCN 79.79:|:1_?5 65.77:|:1.49 85.14:|:{]_g5 77.83:|:D.53 BT-QB;I;{].SS 83.35:|:D.92 90*04:I:D.53 92.74:&[}_33 62-76;|:{]_21 32-33:&2_?9 45-85:|:4_59 37-17:|:5_51
DropEdge 79.61+156  65.54+132 85.214034  77.991055  88.13+1.01 83.6541.13 90.09+0.32  92.66+036  62.654+033 31.9441101  43.2043.17 34.9145.03
DTDPNDd'E: BD.lg:l:]__ﬁg 65.5Di1.28 85.33;|;{].24 TT.SQiD.BT 87-69;|;1.{]1 83.23i[}.54 90. 12;|:D.54 92.67i[}_34 52.69:|:.[]_1? 30.77i1_51 42.76:|:g_{]g 34.33:|:5_33
DropMessage | 79.711186  65.754+142  85.311030  77.90+056  88.07+1.03 83.61+0.52 90.35+0.32  92.724038  63.2040.18  30.734205 44.4416.24 34.66+6.55
TUNEUP 80.4041 77 66.354166  85.12.0908  78.134080 87.87+10.97 83.4510.86 88.98:059 91.641032 62.89:g19 31.094329 45.511466 37.5046.91
GraphPatcher | 81.1341.9; 65.394+1.17 84.98.1 .24 78.8810.099 89.281066 83.24 11 02 89.4810.49 93.03+0.39 63.56+0.13 29.22411.711 46.241 3 g5 38.29.16.88
GCNB(OLII'S) 82.05:|:1_75 67.17:|:1_37 86.85:|:[]_22 79-25;|;[}.58 88.53:|:1_{]g 84.61:|:[}_93 92'97iﬂ.59 94.07:|:[}_27 64-40iﬂ.2[} 32.25i1_gg 47.06:|:4.13 37.35:|:.5_gg




3) Addressing Structural Disparity

» Consistent with recent findings (Mao et al., 2024), our experiments show that MLPs generally outperform

GNNSs on heterophilous nodes, while GNNs perform better on homophilous nodes.

» Aggregation buffer achieves the highest GNN performance on heterophilous nodes in 9 datasets.

VGO Lol'd .llLeseel Fuapve W1lK1l1—_o 1oL O Lomputelr e FNAYS1CS A1V ACLOLE oJulrreld L lldallle Le o
ACCURACY ON HOMOPHILOUS NODES
MLP 71.684177  76.37+1.19 89904058  86.304+058 83.634141 86.0l4050 96.964025  98.024007 74.694014  36.88+152  35.844973 33.5045.96
GCN 92.69+153 87.96+125  95.994020 94.05+065  96.454+376 94474053  99.254015  99.3240.15 95434008 39471162 48.714357 47.1545.79
DropEdge 02.38+188 88.0610.90 96.124036 94.441042  96.354384  94.724043  99.2840.13  99.3240.12  95.6810.15 38301108  41.2544.34 42.394 499
DropNode 92.81+163 87.841097 96.174032  93.99i060 96484371 9429030 99.31i017 99.2940.13  95.6240.13 38.001079  40.7345.13 42.67 1593
DI‘DpMESS'dgE 92.51:I: 1.67 SB.Dﬁil 02 Qﬁ.lﬂin_gg 94.4910.34 96.3513.67 94-62:|:D.4? 99-37iﬂ.15 99.32:|:(]_13 95.79:|:u_g5 38.02:|:l_54 45*22:I:4.ﬁﬂ 41.25:|:4_93
TUNEUP 93174160 88.354112  96.041030 94.054065  96.30437 94574055 99141014  99.264013 95674011 37944957 48.584379  47.8945 g9
GraphPatcher | 93.234;24  87.3841 09 96.0441908 94.084053 98.181010 94654064 98.334030 9944,907 95.721009 34.76+718 48.7149g9 44.83 45 9o
GCNg(Ours) | 94131130 88.78.152 9583410908 94.65.057 9654137 95.301049 98.641056 99.334017 95.664013 38.261190 49521340 47.01:5460
ACCURACY ON HETEROPHILOUS NODES

MLP 50.93:|:D_gg 44.88i1_32 73.22:|:[|_71 57.90:|:g_93 81.71 +1.34 66.84:|:D_59 85.96:|:g_29 89.08:,:9_37 34-53iﬂ.lﬂ 31.66i2_79 32.565;4_13 29.53:|:4_33
GCN 64.18.9 49 41964194  67.3440.47 51.89+108 81.74410.75 71.4214 55 76.81106s  86.604937 32.5140.9s 19134155  42.1945 54 33.74 47 61

DropEdge 64.094968 41.784197 67124052  50.974149  81.504069  71.064195  76.92.035 86471040 31.704052  19.294170  41.5946.04 37.0145.02
DropNode 64.60+358 41.5994108 67241051 51.664+121  80.671p97  T1.38471.901 76.931065 86.464939 31.91.057 18.931102  41.5414 59 36.7845.27
DropMessage | 64.394077 41.84.084 67234039 51.4841098 81.654082 7T1.874098  77.274+051 864741044 322941046 19494718 40.794468  37.901763
TUNEUP 63.594036 42.7T44107 67.094080  52.50+072  81.584087 71.034217  74.1641.11 84.67+065  31.6840.23 18.244092  42.1345.24 33.00+6.69
GraphPatcher | 64.1741990 44474089 664141934 953.034086 81.464168 71.564796  78.671053 86.871064  33.384014  18.494733  42.41,45 16 34.4547 90
GCNpg(Ours) | 65.541234 43.2441 05 70.77+0.71 524441027 82294105 720217125 82.754063 88434035 34.0240.34 19964140 42421497  35.03+753

Aggregation buffer effectively optimizes edge-robustness improved structural generalization.




Generalization to other GNN architectures

Our method consistently delivers significant performance improvements across all four widely-used GNN
architectures, demonstrating its broad applicability and effectiveness.

Table 3. Accuracy of different GNN models before and after the
integration with AGG g. AGG g achieves consistent and significant

performance improvements across various architectures.

Pubmed CS Arxiv Chameleon
SAGE 87.07:|:0.24 92.44j:0,60 70.92j:0_16 37-34j:3.56
SAGEg | 88.094028 93.364047 71.1610.14 37.85+3 80
GAT 85.6410.24 90.50+0.28 71.8640.14 38.54 15 70
GATB 87.47j:0_37 93.09:|:0_50 72.26:|:ﬂ_14 39.08:|:2_34
SGC 84.0140.76 90.8910.45 69.1540.05 38.24 13 00
SGCB 84.77i1,02 91.90:|:0.43 69.55:|:0_04 38.91:|:3_03
GIN 85.42:|:0_20 87.88i0.51 63.94j:0,53 39-84i2.69
GINB 87.18i0.17 88.58:|:1.00 65.66:|:0_75 41.72:|:2_41

Aggregation Buffer

\. J
D'

Aggregation of any GNNs

Aggregation buffer is compatible with most GNN architectures due to its modular design.




Conclusion

1. We identify a . it fails to fully optimize robustness during training.
2. Theoretical analysis reveals this stems from discrepancies that arise during GNN aggregation.

3. To address this, we propose (AGGg)—a post-hoc parameter block that refines the
aggregation output at each GNN layer to improve edge-robustness.

4. We evaluated on 12 node classification benchmarks and 5 different architectures. It showed significant and
such as degree bias and structural disparity.

Full Paper Project Page

Future Work

Enabling end-to-end AGGg training with a GNN backbone
for joint optimization of bias and robustness.




