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Introduction



Label Smoothing
• has been demonstrated to be a promising paradigm in settings to prevent models

from becoming overconfident or when noise exists in the provided labels.

• Consider a model parameterized by θ to model a conditional distribution P (·|x; θ),
where the final operation is a softmax. Consider the model to apply a function
f(·; θ) on x and σ̂(x; θ) ∈ [0, 1]K to be the post-softmax output. Then

P (γi|x; θ) = σ̂(x; θ)i = exp(ℓ(x)i)∑K
k=1 exp(ℓ(x)k)

,

where ℓ(x) ∈ RK is the pre-softmax output of the model, commonly referred to as
the logits or log-probabilities.

• Models are usually trained by minimizing a cross-entropy (CE) loss on a dataset
D = {x(n), y(n)}N

n=1 sampled from an unknown distribution p(x, y) in order to learn
the true conditional distribution py|x(y|x), computed as

LCE
D (θ) = − 1

N

N∑
i=1

K∑
k=1

δγk

y(n) log P (γk|x; θ) ≈ −Ep(x,y)

[
K∑

k=1
p(γk|x) log P (γk|x; θ)

]
= −Ep(x,y)[KL [σ(x)∥σ̂(x; θ)]] + c = LCE

p(x,y)(θ),

(1)

where δj
i is the Kronecker delta with value 1 only when i = j.
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• Label smoothing mixes the original distribution with a discrete uniform distribution
U = [1/K]K ∈ RK using a smoothing rate β ∈ [0, 1].
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Confidence Calibration

• Model Calibration is a concept of matching the prediction probabilities yielded for
different inputs to the expected accuracy on these inputs.

• In a K-way classification setting, let X ∈ RD and Y ∈ {γk}K
k=1 indicate the input

and label space, respectively. Let f be a classifier and f (ŷ|x) = ĉ be the confidence
of prediction, i.e., the maximum of probabilities among K dimensions corresponding
to its prediction ŷ.

• A model is perfectly-calibrated when

P (ŷ = y|ĉ = c) = c ∀c ∈ [0, 1].
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Label Smoothing and Calibration



Label Smoothing Helps Calibration
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Figure: Effects of instruction-tuning on calibration. We can observe that across all models, which have
various structural differences, the use of label smoothing is capable of reducing calibration error while
having negligible effects on downstream performance accuracy on the task.
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Effectiveness of Label Smoothing

SFT Dataset Model MMLU HellaSwag Arc-easy

Acc. ↑ ECE ↓ RMS ↓ Acc. ↑ ECE ↓ RMS ↓ Acc. ↑ ECE ↓ RMS ↓

Alpaca

Mistral-7B + SFT (β = 0) 0.579 0.134 0.120 0.302 0.127 0.160 0.803 0.099 0.154
Mistral-7B + SFT (β = 0.1) 0.590 0.094 0.104 0.304 0.087 0.124 0.806 0.071 0.131

LLaMA3-8B + SFT (β = 0) 0.638 0.113 0.113 0.375 0.162 0.085 0.863 0.070 0.127
LLaMA3-8B + SFT (β = 0.1) 0.636 0.073 0.094 0.374 0.087 0.037 0.864 0.037 0.098

Gemma2-2B + SFT (β = 0) 0.528 0.343 0.180 0.302 0.127 0.160 0.773 0.131 0.174
Gemma2-2B + SFT (β = 0.1) 0.532 0.125 0.121 0.304 0.087 0.124 0.764 0.069 0.127

Tulu3Mixture

Mistral-7B + SFT (β = 0) 0.600 0.096 0.105 0.369 0.044 0.085 0.843 0.078 0.135
Mistral-7B + SFT (β = 0.1) 0.603 0.028 0.071 0.375 0.021 0.067 0.840 0.030 0.094

LLaMA3-8B + SFT (β = 0) 0.651 0.050 0.080 0.361 0.049 0.091 0.857 0.058 0.114
LLaMA3-8B + SFT (β = 0.1) 0.646 0.012 0.061 0.356 0.025 0.064 0.858 0.035 0.097

Gemma2-2B + SFT (β = 0) 0.533 0.341 0.177 0.273 0.082 0.128 0.758 0.086 0.142
Gemma2-2B + SFT (β = 0.1) 0.531 0.020 0.064 0.271 0.041 0.087 0.755 0.029 0.101

OpenHermes

Mistral-7B + SFT (β = 0) 0.602 0.071 0.094 0.546 0.041 0.071 0.867 0.066 0.100
Mistral-7B + SFT (β = 0.1) 0.602 0.014 0.059 0.552 0.021 0.042 0.857 0.036 0.076

LLaMA3-8B + SFT (β = 0) 0.654 0.038 0.077 0.552 0.063 0.074 0.880 0.065 0.112
LLaMA3-8B + SFT (β = 0.1) 0.646 0.016 0.059 0.554 0.038 0.037 0.880 0.041 0.089

Gemma2-2B + SFT (β = 0) 0.541 0.353 0.180 0.364 0.125 0.143 0.816 0.131 0.175
Gemma2-2B + SFT (β = 0.1) 0.542 0.016 0.063 0.362 0.077 0.096 0.813 0.038 0.096
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Why?

Logit Distance
The logit distance vector for x, d(x), is

d(x) =
[

max
1≤i≤K

ℓ(x)i − ℓ(x)k

]K

k=1
∈ RK . (3)

One way of ensuring that a model does not over-estimate a specific class is to enforce
this as a hard constraint, which results in equal logits among all classes and a softmax
output of o = f(x; θ) = [1/K]K . As such, it is often preferable to enforce this as a
soft-penalty function P : RK → R into the objective function minimized during training.
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Why?

Label Smoothing as a Linear Constraint
A linear penalty (or a Lagrangian term) for the hard constraint d(x) = 0 is bounded
from above and below by KL (u∥σ̂ (x; θ)), up to additive constants

KL[u∥σ̂ (x; θ)] − log K ≤
K∑

i=1

d (x)i

K
≤ KL [u∥σ̂ (x; θ)] . (4)

Label Smoothing and MAP Estimation
Define a likelihood model p (y|x; θ) = Cat (softmax (f (x; θ))), a categorical distribution
with parameters z = softmax (f (x; θ)) ∈ ∆(Θ) where ∆ (Θ) denotes a probability
simplex over the parameter space Θ. The label smoothing objective is equivalent to
Maximum A Posteriori (MAP) estimation on the softmax probability vector under the
independence assumption p (z|x) = p (z).
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But What Happes For Large Vocabulary LLMs?
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Figure: Effect of label smoothing on large vocabulary models with a smaller hidden size (2048).
Gemma-2B observes a smaller change compared to LLaMA3.2-1B, due to having the largest vocabulary
size. However, Gemma2-2B observes a large change in part thanks to the softcapping of logits.
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Why Not For Large Vocabulary LLMs?

LM Head Entropy Lower Bound

Let ρ = σCσh, u = C⊤h and γ = exp
(

−ρ

√
D|V |
|V |−1

)
, then the entropy Hu of prediction

of the LM head holds that:

Hu ≥ log (1 + (|V | − 1) γ) + ρ · γ
√

D |V | (|V | − 1)
1 + (|V | − 1) γ

. (5)

Given the same |V |, the concentration behavior of the LM head is primarily influenced by
the size of the hidden dimension. As the hidden size increases, the model is increasingly
capable of attaining a lower entropy, while the bound is smaller for larger |V | at the same
D, highlighting why large vocabulary LLMs at smaller sizes are less prone to
overconfidence during tuning.
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Efficient Kernel



Background

Consider the label smoothed loss:

LLS
x =

N∑
i=1

LLS
xi

=
N∑

i=1

[
(1 − β) C⊤

xi
Ei︸ ︷︷ ︸

(1)Target Loss

+ β

|V |
∑
v∈V

C⊤
v Ei︸ ︷︷ ︸

(2)Smoothing Loss

− log
∑
v∈V

exp
(
C⊤

v Ei

)
︸ ︷︷ ︸

(3)LSE

]
, (6)

(2) means all logits need to be explicitly added to the loss.
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Fixing This

Saving computations
You can fix this by storing intermediate block-wise logit computations and use the final
LSE within the softmax computation!

This forms the basis of an efficient kernel we build.
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Efficient Kernel

Method fwd bwd fwd+bwd

Memory Time Memory Time Memory Time

Smoothing β > 0

Ours 1.1MB 24.2ms 1163MB 49.3ms 1164MB 72.9ms

torch.compile 4000MB 22.8ms 12000MB 38.3ms 16000MB 62.3ms
Baseline 24000MB 41.4ms 16000MB 62.5ms 28000MB 104.9ms

Smoothing β = 0

Ours 1.1MB 24.0ms 1163MB 49.2ms 1164MB 72.9ms

Cut-Cross Entropy 1.1MB 23.6ms 1163MB 49.2ms 1164MB 72.4ms
torch.compile 4000MB 20.6ms 4000MB 33.9ms 8000MB 55.0ms
Baseline 24000MB 38.7ms 16000MB 55.8ms 28000MB 96.0ms
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Efficient Kernel
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Conclusion



Final Takeaways

• Instruction-following large language models, though powerful, suffer from confidence
calibration concerns.

• Label smoothing, though simple, is effective at reducing this concern particularly
during the instruction-tuning phase of training.

• However, label smoothing diminishes in effectiveness as the vocabulary size
decreases, necessitating the need for alternative methods such as temperature tuning
or logit scaling.

• Additionally, label smoothing is expensive due to needing to needing to materializing
all logits within the GPU memory.
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Contributions

1. We build a better understanding of when and why label smoothing can help
calibrate instruction-tuned LLMs.

2. We provide a efficient kernel that computes cross entropy losses with label
smoothing, significantly reducing memory usage while improving computation speed.
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Thank you!
peng.lu@umontreal.ca
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