

Semantic Shift Estimation via Dual-Projection and Classifier Reconstruction for Exemplar-Free Class-Incremental Learning

Run He¹, Di Fang¹, Yichen Xu², Yawen Cui³, Ming Li⁴, Cen Chen¹, Ziqian Zeng¹, Huiping Zhuang^{1*}

¹South China University of Technology

²Institute of Science Tokyo

³The Hong Kong University of Science and Technology

⁴Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ)

□ Incremental Learning

Incremental learning: Enables continuous knowledge acquisition, mimicking human behavior.

Practical Significance:

- ➤ No need for **retraining**;
- > Adapt models to intricate usage.

☐ Three Settings of IL

Class Incremental Learning (CIL) is one of the most difficult and most common setting in the field of IL.

□ Challenges: Catastrophic Forgetting

- Model Learns in multiple stages and different tasks;
- > New model does well in **new tasks**;
- > Performance decrease for the previous tasks.

□ Challenges behind CF

---- Semantic shift

- > Semantic Shift: features of previous tasks shift after new task;
- > **Decision bias**: biased decision boundaries since training on new data solely;

Decision boundaries

□Our Solution: DPCR

- > Dual Projection: estimate the semantic shift across tasks;
- Classifier Reconstruction: reconstruct the classifier via ridge-regression;

(c) Ridge Regression-based Classifier Reconstruction

□ DPCR: Dual Projection and Classifier Reconstruction

(c) Ridge Regression-based Classifier Reconstruction

- Dual Projection to estimate both task and class-specific shift
- Classifier Reconstruction addresses the decision bias

□ Incremental Representation Learning

 Utilize Knowledge Distillation to avoid CF

$$\mathcal{L}_{\text{rep}} = \mathcal{L}_{\text{ce}}(h_{\tau_t}^{\text{au}}(f_{\theta_t}(\mathcal{X}_t), y_t) + \alpha \mathcal{L}_{\text{kd}}(\mathcal{X}_t))$$

$$\mathcal{L}_{kd} = \mathcal{L}_{ce}(h_{\tau_{t-1}}^{au}(f_{\theta_{t-1}}(\mathcal{X}_t)), h_{\tau_t}^{au}(f_{\theta_t}(\mathcal{X}_t)))$$

吴贤铭智能工程学院

□Shift Estimation via Dual-Projection (DP)

Obtain task shift via TSSP

$$\operatorname*{argmin}_{\boldsymbol{P}^{t-1} \to t} \mathcal{L}_{\text{mse}} = \|\boldsymbol{X}_{t}^{\theta_{t}} - \boldsymbol{X}_{t}^{\theta_{t-1}} \boldsymbol{P}^{t-1 \to t}\|_{\text{F}}^{2}$$

$$\boldsymbol{P}^{t-1 \to t} = (\boldsymbol{X}_t^{\theta_{t-1} \top} \boldsymbol{X}_t^{\theta_{t-1}} + \epsilon \boldsymbol{I})^{-1} \boldsymbol{X}_t^{\theta_{t-1} \top} \boldsymbol{X}_t^{\theta_t}$$

> Inject class-specific information via CIP covariance $\Phi_{t-1,c}^{\theta_{t-1}} = X_{t-1,c}^{\theta_{t-1} \top} X_{t-1,c}^{\theta_{t-1}}$

Extract class information via SVD

$$oldsymbol{U}_{t-1,c}, oldsymbol{\Sigma}_{t-1,c}, oldsymbol{U}_{t-1,c}^{ op} = \operatorname{SVD}(\Phi_{t-1,c}^{ heta_{t-1}}) \quad oldsymbol{U}_{t-1,c} = \begin{bmatrix} oldsymbol{U}_{t-1,c}^r & oldsymbol{U}_{t-1,c}^z \\ oldsymbol{P}_{t-1,c}^{t-1 op t} = oldsymbol{P}^{t-1 op t} oldsymbol{U}_{t-1,c}^r oldsymbol{U}_{t-1,c}^{r op} \end{bmatrix}$$

- > Formulate the classifier training as a reconstruction process
- > Calibrate the old information with DP analytically

Classifier training via ridge-regression

$$\mathbf{Solution} \quad \begin{aligned} \underset{\mathbf{W}_{t}}{\operatorname{argmin}} \quad & \| \boldsymbol{Y}_{1:t} - \boldsymbol{X}_{1:t}^{\theta_{1}} \boldsymbol{W}_{t} \|_{\mathrm{F}}^{2} + \gamma \, \| \boldsymbol{W}_{t} \|_{\mathrm{F}}^{2} \\ & \boldsymbol{W}_{t} \end{aligned}$$

$$\mathbf{Solution} \quad \hat{\boldsymbol{W}}_{t} = (\sum_{i=1}^{t} \sum_{c \in \mathcal{C}_{i}} \boldsymbol{X}_{i,c}^{\theta_{t} \top} \boldsymbol{X}_{i,c}^{\theta_{t}} + \gamma \boldsymbol{I})^{-1} \sum_{i=1}^{t} \sum_{c \in \mathcal{C}_{i}} \boldsymbol{X}_{i,c}^{\theta_{t} \top} \boldsymbol{Y}_{i,c}$$

$$= (\sum_{i=1}^{t} \sum_{c \in \mathcal{C}_{i}} \boldsymbol{\Phi}_{i,c}^{\theta_{t}} + \gamma \boldsymbol{I})^{-1} \sum_{i=1}^{t} \sum_{c \in \mathcal{C}_{i}} \boldsymbol{H}_{i,c}^{\theta_{i}}$$

$$\boldsymbol{\Phi}_{i,c}^{\theta_{t}} = \boldsymbol{X}_{i,c}^{\theta_{t} \top} \boldsymbol{X}_{i,c}^{\theta_{t}}, \quad \boldsymbol{\mu}_{i,c}^{\theta_{t}} = \frac{1}{N_{c}} \sum_{j=1}^{N_{c}} \boldsymbol{x}_{i,c,j}^{\theta_{t}}.$$

Calibrate semantic shift with DP

$$\hat{\boldsymbol{\Phi}}_{i,c}^{\theta_t} = \hat{\boldsymbol{X}}_{i,c}^{\theta_t \top} \hat{\boldsymbol{X}}_{i,c}^{\theta_t} = \boldsymbol{P}_{i,c}^{t-1 \to t \top} \boldsymbol{\Phi}_{i,c}^{\theta_{t-1}} \boldsymbol{P}_{i,c}^{t-1 \to t}$$

$$\hat{\boldsymbol{\mu}}_{i,c}^{\theta_t} = \frac{1}{N_c} \sum_{j=1}^{N_c} \hat{\boldsymbol{x}}_{i,c,j}^{\theta_{t-1}} = \boldsymbol{\mu}_{i,c}^{\theta_{t-1}} \boldsymbol{P}_{i,c}^{t-1 \to t},$$

$$\hat{\boldsymbol{H}}_{i,c}^{\theta_t} = \sum_{c \in \mathcal{C}_i}^{C} N_c \hat{\boldsymbol{\mu}}_{i,c}^{\theta_i \top} \boldsymbol{y}_{i,c}.$$

Integrate with new tasks

$$\begin{split} \hat{\boldsymbol{W}}_t &= (\sum_{i=1}^{t-1} \hat{\boldsymbol{\Phi}}_i^{\theta_t} + \boldsymbol{\Phi}_t^{\theta_t})^{-1} (\sum_{i=1}^{t-1} \hat{\boldsymbol{H}}_i^{\theta_t} + \boldsymbol{H}_t^{\theta_t}) \\ \hat{\boldsymbol{\Phi}}_i^{\theta_t} &= \sum_{c \in \mathcal{C}_i} \hat{\boldsymbol{\Phi}}_{i,c}^{\theta_t}, \quad \hat{\boldsymbol{H}}_i^{\theta_t} = \sum_{c \in \mathcal{C}_i} \hat{\boldsymbol{H}}_{i,c}^{\theta_t}. \\ \boldsymbol{\Phi}_t^{\theta_t} &= \sum_{c \in \mathcal{C}_t} \boldsymbol{\Phi}_{t,c}^{\theta_t}, \quad \boldsymbol{H}_t^{\theta_t} = \sum_{c \in \mathcal{C}_t} \boldsymbol{H}_{t,c}^{\theta_t}. \end{split}$$

Classifier Normalization

$$\hat{m{W}}_t' = [rac{m{w}_1}{\|m{w}_j\|_1}, rac{m{w}_2}{\|m{w}_2\|_2}, ..., rac{m{w}_{tC}}{\|m{w}_{tC}\|_2}]$$

□ Compare with State-of-the-arts

	CIFAR-100				Tiny-ImageNet				ImageNet-100			
Methods	T=10		T=20		T=10		T=20		T=10		T=20	
•	\mathcal{A}_{f}	$\mathcal{A}_{ ext{avg}}$	\mathcal{A}_{f}	$\mathcal{A}_{ ext{avg}}$	\mathcal{A}_{f}	$\mathcal{A}_{ ext{avg}}$	\mathcal{A}_{f}	$\mathcal{A}_{ ext{avg}}$	\mathcal{A}_{f}	$\mathcal{A}_{ ext{avg}}$	\mathcal{A}_{f}	$\mathcal{A}_{ ext{avg}}$
LwF (2017)	42.60	58.51	36.34	51.52	26.99	42.92	18.80	33.05	42.25	61.23	30.11	50.40
SDC (2020)	42.25	58.43	33.10	48.68	23.86	40.66	13.45	29.70	37.68	60.33	23.64	45.52
PASS (2021b)	44.47	55.88	28.48	42.65	23.89	36.82	12.50	25.38	36.52	52.02	19.59	31.55
ACIL (2022b)	35.53	50.53	27.22	39.58	26.10	41.86	21.40	33.60	44.61	59.77	33.05	48.58
FeCAM (2023)	34.82	49.14	25.77	41.21	29.83	42.19	22.69	34.48	41.92	58.21	28.64	43.04
DS-AL (2024b)	36.83	51.47	28.90	40.37	27.01	40.10	21.86	33.55	45.55	60.56	34.10	49.38
ADC (2024)	46.80	62.05	34.69	52.16	32.90	46.93	20.69	36.14	46.69	65.60	32.21	52.36
LDC (2024)	46.60	61.67	36.76	53.06	33.74	47.37	24.49	38.04	49.98	67.47	34.87	54.84
DPCR (Ours)	50.24 ^{†3.64}	63.21 ^{†1.54}	$38.98^{\uparrow 2.22}$	² 54.42 ^{↑1.36}	$35.20^{\uparrow 1.46}$	$47.55^{\uparrow 0.18}$	$26.54^{+2.05}$	38.09 ^{↑0.05}	52.16 ^{†2.18}	67.51 ^{†0.04}	$38.35^{\uparrow 3.48}$	$57.22^{+2.36}$

CUB200 (T=5)	$\mathcal{A}_{\mathrm{f}}\left(\% ight)$	$\mathcal{A}_{\mathrm{avg}}$ (%)
LwF (Li & Hoiem, 2017)	25.40	36.38
ACIL (Zhuang et al., 2022b)	21.14	33.14
DS-AL (Zhuang et al., 2024b)	21.28	32.36
SDC (Yu et al., 2020)	24.24	36.00
ADC (Goswami et al., 2024)	28.84	39.44
LDC (Gomez-Villa et al., 2024)	28.70	39.09
DPCR (Ours)	29.51	39.44

ImageNet-1k (T=10)	$\mathcal{A}_{\mathrm{f}}\left(\% ight)$	$\mathcal{A}_{\mathrm{avg}}$ (%)
LwF (Li & Hoiem, 2017)	22.01	42.40
ACIL (Zhuang et al., 2022b)	32.28	46.61
DS-AL (Zhuang et al., 2024b)	33.67	48.84
ADC (Goswami et al., 2024)	31.34	50.95
LDC (Gomez-Villa et al., 2024)	35.15	53.88
DPCR (Ours)	35.49	54.22

> Outperform existing EFCIL methods with considerable gap.

□ Evolution Curve

Outperform existing methods across the training tasks.

□ Ablation Study

➤ The performance can be further improved with TSSP, CIP and CN on top of RRCR

Components	$\mathcal{A}_{\mathrm{f}}\left(\% ight)$	$\mathcal{A}_{\mathrm{avg}}$ (%)
RRCR	32.17	44.89
RRCR+TSSP	40.86	55.76
RRCR+TSSP+CIP	45.56	62.15
RRCR+TSSP+CIP+CN	51.04	64.44

DP outperform existing methods that estimate semantic shift

	CIFAR-100				Tiny-ImageNet				
Methods	T=10		T=20		T=10		T=20		
	\mathcal{A}_{f}	$\mathcal{A}_{ ext{avg}}$	\mathcal{A}_{f}	$\mathcal{A}_{ ext{avg}}$	\mathcal{A}_{f}	$\mathcal{A}_{ ext{avg}}$	\mathcal{A}_{f}	$\mathcal{A}_{\mathrm{avg}}$	
ADC	47.65	62.63	35.17	52.16	30.71	41.81	18.63	31.55	
LDC	47.40	62.39	37.10	53.28	32.90	43.67	23.57	34.08	
DP-NCM	49.19	63.47	37.64	53.86	33.47	43.86	24.90	35.22	

□ Ablation Study

CIP Enhances Both the Stability and Plasticity

RRCR reduces decision bias

□ Ablation Study

> Visualization of effect of DP on the decision boundaries

- > Our codes are available at: https://github.com/RHe502/ICML25-DPCR.
- > The corresponding QR code:

