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❑Incremental Learning

Incremental learning: Enables continuous knowledge acquisition, 

mimicking human behavior.

Practical Significance:

➢ No need for retraining;

➢ Adapt models to intricate usage.
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❑Three Settings of IL

Class Incremental Learning (CIL) is one of the most difficult and most 
common setting in the field of IL.

Zhou, D. W., Wang, Q. W., Qi, Z. H., Ye, H. J., Zhan, D. C., & Liu, Z. (2023). Deep class-incremental learning: A survey. TPAMI, 2024.
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❑Challenges: Catastrophic Forgetting

➢ Model Learns in multiple stages and different tasks;

➢ New model does well in new tasks;

➢ Performance decrease for the previous tasks. 
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❑Challenges behind CF
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➢ Semantic Shift: features of previous tasks shift after new task;

➢ Decision bias: biased decision boundaries since training on new data solely;

Emebddings of old task 

extracted by old backbone 

(a) Semantic Shift in Embedding Space

Emebddings of new task 

extracted by new backbone 
Emebddings of old task 

extracted by new backbone 

Semantic shift Decision boundaries

(b) Decision Bias towards New Tasks

Hou, S., et.al. (2019). Learning a unified classifier incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 831-839).



Introduction

❑Our Solution: DPCR
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➢ Dual Projection: estimate the semantic shift across tasks;

➢ Classifier Reconstruction: reconstruct the classifier via ridge-regression;
(a) Incremental Representation Learning (b) Shift-Estimation via Dual-projection
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Proposed Method

❑DPCR: Dual Projection and Classifier Reconstruction

• Dual Projection to estimate both task and class-specific shift

• Classifier Reconstruction addresses the decision bias
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(a) Incremental Representation Learning (b) Shift-Estimation via Dual-projection
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(c) Ridge Regression-based Classifier Reconstruction
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Proposed Method

❑Incremental Representation Learning
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labels

• Utilize Knowledge Distillation 
to avoid CF
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❑Shift Estimation via Dual-Projection (DP)
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➢ Obtain task shift via TSSP

TSSP

Eq. (12)

CIP

TSSP CIP Task t-1 Task t

➢ Inject class-specific information via CIP
covariance

Extract class information via SVD
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❑Ridge Regression-based Classifier Reconstruction (RRCR)
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➢ Formulate the classifier training as a reconstruction process

➢ Calibrate the old information with DP analytically
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❑Ridge Regression-based Classifier Reconstruction (RRCR)
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➢ Classifier training via ridge-regression

Solution
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❑Ridge Regression-based Classifier Reconstruction (RRCR)
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➢ Calibrate semantic shift with DP ➢ Integrate with new tasks



Proposed Method

❑Ridge Regression-based Classifier Reconstruction (RRCR)
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➢ Classifier Normalization



Experiments

❑Compare with State-of-the-arts
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➢ Outperform existing EFCIL methods with considerable gap.



Experiments

❑Evolution Curve
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➢ Outperform existing methods across the training tasks.



Experiments

❑Ablation Study
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➢ The performance can be further improved 

with TSSP, CIP and CN on top of RRCR

➢ DP outperform existing methods 

that estimate semantic shift
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❑Ablation Study
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➢ CIP Enhances Both the Stability and 

Plasticity

➢ RRCR reduces decision bias
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❑Ablation Study
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➢ Visualization of effect of DP on the decision boundaries



Our Codes

➢ Our codes are available at: https://github.com/RHe502/ICML25-DPCR.

➢ The corresponding QR code:
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https://github.com/RHe502/ICML25-DPCR
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