
any4: Learned 4-bit Numeric 
Representation for Large Language 
Models

Fundamental AI Research 
(FAIR) at Meta

QR CODE

Take a photo to learn more:

Quantization / weight distribution mismatch
Datacenter inference: DRAM/HBM increasingly dominate power 
consumption in many cases, better to be arithmetic than memory bound. 
Reduce data size and make the bits you are moving around have more 
meaning?
Edge devices: Smaller models allow use of smaller and/or slower memories 
(lower power) while still maintaining performance targets.

4-bit quantization yields significant speedups while maintaining sufficient 
accuracy (unlike most 1-3 bit implementations). Training using high 
dynamic range floating-point arithmetic, varying scale factors, and outliers 
offer challenges to lossy compression via quantization.

Efficient inference often uses uniform quantization (int4) or 
hardware-supported non-uniform quantization (fp4) which do not match 
weight distribution (quasi-Gaussian). Quantization grouping (shared 
scale/offset) helps but is just an affine transformation. Distribution 
mismatch increases quantization error and thus lowers accuracy.

Make dequantization values match weight distribution? 
Can you learn dequantization values for specific weight matrices?
Can you implement learned dequantization efficiently in hardware? 

Learning any4 quantization codes (any4 LUTs)

any4: learned 4-bit quantization from weights 
fp4, NormalFloat4 (NF4) [1], AbnormalFloat4 (AF4) [2] are non-uniform 
distributions (latter two assume Gaussian) but are fixed a priori, not 
learned from data (fp4 directly in hardware itself).

Weight pre-processing (e.g., AWQ [3], GPTQ/OPTQ [4], QuIP [5], etc.) 
can smooth outliers and yield improvements with int4, but losses still 
exist with int4 uniform distribution.

Solution (any4): use per-row data clustering to learn 4-bit 
(de)quantization values per each row (or column) of a matrix (scalar 
k-means). Also takes into account expected activation data distribution 
(sampled activations used in clustering). Any arbitrary int4 code to float 
mapping can be provided.

Per-row LUT used for dequantization within efficient GPU kernel 
implementation (tinygemm). Orthogonal technique to existing weight 
pre-processing methods (GPTQ, Hadamard, etc.), just another 
technique to map floating-point weights to/from int4 codes.

Low overhead (32 bytes/row for bfloat16/float16 LUT containing 16 
per-row reproduction values):
N x 4096 matrix: overhead of 0.015625 bits/weight (~1.5%)
N x 8192 matrix: overhead 0.0078125 bits/weight (~0.78%)

tinygemm: a latency-optimized GPU 
GEMM library implementing any4
GEMM libraries mainly focus on throughput for large matrix 
multiplications which can better achieve near peak arithmetic 
throughput. Small batch (e.g., bs=1) inference in LLMs frequently 
involves (1 x K) x (K x N) GEMVs with low arithmetic intensity. Memory 
latency, not arithmetic throughput or memory bandwidth, is often 
limiting factor.

tinygemm is designed for this small batch / latency sensitive domain. 
Its int4 kernels are part of pytorch core (since late 2023) and used for 
small batch int4 inference by compiler/torchao as needed. 

Much GEMM machinery added recently (e.g., wgmma) does not work 
well in this case as by definition we would only be using 1/N - ε/N of the 
tensor core (TC) throughput for larger N. TC is still more efficient than 
scalar FMA + reductions (pre-TC GEMMs). Using smaller TC tile sizes 
(e.g., Ampere+ m16n8k16 for fp16/bf16) increases utilization.

any4 is an extension to int4 tinygemm that uses small LUTs held in 
registers or shared memory for dequantization. Our paper discusses 
“row-wise” any4, but “matrix-wise” any4 is also available which can 
implement NF4/AF4 or emulate any other 4-bit scalar representation 
(e.g., fp4) on platforms not supporting it.

tinygemm does not use async loads or shared memory transposition, 
matrices are directly laid out in “tensor core” format in memory, packed 
so that all memory accesses are warp contiguous 16B loads straight 
from gmem to tensor core registers for latency (the reason why pytorch 
added “tensor core” memory layout). Small batch = no weight reuse.

References
[1] Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer, L. Qlora: Efficient finetuning of 
quantized llms. In Oh, A., Naumann, T., Globerson, A., Saenko, K., Hardt, M., and Levine, S. 
(eds.), Advances in Neural Information Processing Systems, volume 36, pp. 10088–10115 
(2023).
[2] Yoshida, Davis. NF4 Isn’t Information Theoretically Optimal (and that’s Good), arXiv 
2306.06965 (2023).

[3] Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang, W.-C., Xiao, G., Dang, X., Gan, C., 
and Han, S. Awq: Activation-aware weight quantization for llm compression and acceleration. 
MLSys (2024).
[4] Frantar, E., Ashkboos, S., Hoefler, T., and Alistarh, D. OPTQ: Accurate quantization for 
generative pre-trained transformers.Eleventh International Conference on Learning 
Representations (2023).
[5] Chee, J., Cai, Y., Kuleshov, V., and Sa, C. D. QuIP: 2- bit quantization of large language 
models with guarantees. Thirty-seventh Conference on Neural Information Processing Systems 
(2023).

Quantization is applied after standard quantization grouping along the 
reduction dimension (adjusting values with shared scale and zero offset 
to lie within [0, 15], group sizes 32/64/128/256 supported). Uniform 
int4 quantization simply rounds to nearest integer at this stage, but 
any4 clusters post-quantization group weights along each row which 
allows for non-uniform/arbitrary distributions. Sampled activations are 
used in the optimization process to reduce the expected error 
post-quantization for actual seen usage.

Mostafa Elhoushi
(m.elhoushi@ieee.org)

Jeff Johnson
(jhj@meta.com)

any4 quantization accuracy

As any4 is adapted to weights and sampled activations, it generally 
obtains lower perplexity / higher accuracy than other 4-bit codes.

any4 by itself is competitive with additional weight pre-processing 
techniques prior to quantization (GPTQ, AWQ, QuIP), but any4 is an 
orthogonal technique and could be applied in conjunction with these 
and other pre-processing techniques (future work).

Performance relative to bf16 baseline for (1 x K) x (K x K) GEMV

github.com/facebookresearch/any4


