

Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning

Jinlong Pang, Na Di, Zhaowei Zhu, Jiaheng Wei, Hao Cheng, Chen Qian, Yang Liu

Motivation

New Censensus on SFT: data quality matters far more than quantity.

- Superficial Alignment Hypothesis: LIMA [NeurIPS '23]
- Empirical Observations: ALPAGASUS [ICLR '24], LESS [ICML'24], DS2 [ICLR'25], etc.

Limitation: Even in high-quality samples, patterns or phrases that are not task-related can be redundant, uninformative, or even harmful

Sample-level —> Fine-grained token-level

Token Scoring Mechanism

Main components:

Influence-guided Scoring Function^[1]

Infl
$$(x_{i,j}|\boldsymbol{x}_{i,:j};\theta,\theta') := \ell(x_{i,j}|\boldsymbol{x}_{i,:j};\theta') - \ell(x_{i,j}|\boldsymbol{x}_{i,:j};\theta).$$

$$Score(x_{i,j}|\boldsymbol{x}_{i,:j};\theta,\theta') = -Infl(x_{i,j}|\boldsymbol{x}_{i,:j};\theta,\theta'),$$

 $\theta (\theta_0)$: Base model

 $heta'\left(heta_{t}
ight):$ Better (Reference) model

x: token vector (sample)

 $\boldsymbol{x}_{i,:j}$: previous j-1 tokens

 $x_{i,j}$: target j-th token

Note: A higher score indicates a higher token quality.

Threshold (empirical value, 60%)

$$\hat{y}_{i,j} = \begin{cases} 1 & \text{if Score}(x_{i,j} | \boldsymbol{x}_{i,:j}; \theta, \theta') \text{ ranks top } k\%, \forall i, j; \\ 0 & \text{otherwise.} \end{cases}$$
(4)

Token-Cleaning Pipeline

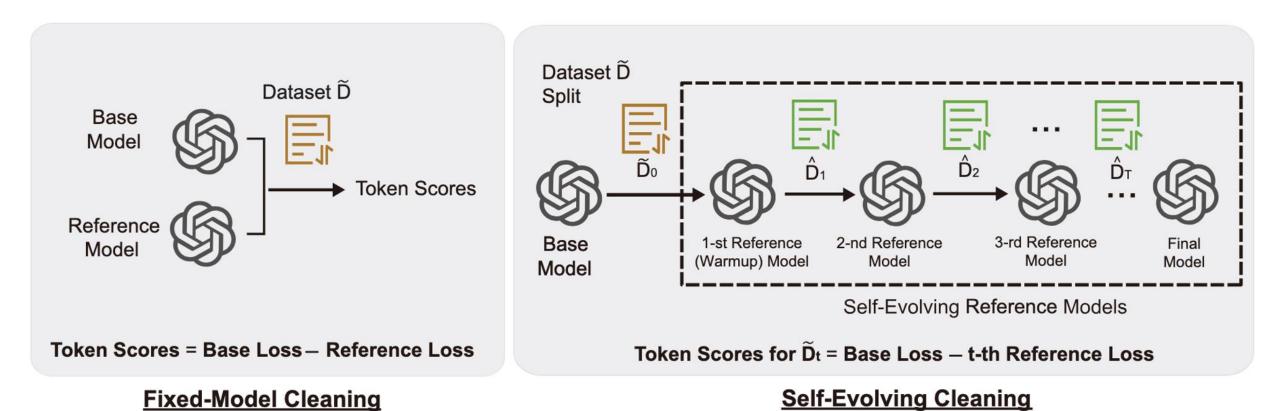


Figure: Overview of token cleaning pipeline

Theoretical Analyses: A Noisy Label Perspective

When and why SFT with cleaned tokens outperforms the full tokens?

Theorem 3.1 (Error of learning with full tokens) With probability at least $1 - \delta$, the generalization error of learning with full tokens is upper-bounded by

$$\mathcal{L}_{\mathcal{D}}(\hat{\theta}_{\widetilde{D}}) \leq \underbrace{\eta(\widetilde{D})}_{Data\ quality} + \underbrace{\sqrt{\frac{2\log(4/\delta)}{M}}}_{Data\ quantity}, \tag{6}$$

where $M := \sum_{i=1}^{N} L_i$ denotes the number of tokens.

- Depends on two factors:
 - Data quality: $\eta(\widetilde{D}) := \mathbb{P}(\widetilde{Y} \neq Y)$ -- the noise rate of full tokens.
 - Data quantity: the number of token M

Theoretical Analyses: A Noisy Label Perspective

Which condition hold if token cleaning works?

Corollary 3.1.1 With probability as least $1-2\delta$, token cleaning performs better than full-tokens in terms of the error upper bound when

$$\eta(\widetilde{D}) - \hat{\eta} \ge \sqrt{2\log(4/\delta)} \cdot \sqrt{\frac{1}{M}} \cdot \left(\sqrt{\frac{1}{\hat{r}}} - 1\right),$$
(7)

where $\hat{\eta} := (\hat{Y} \neq Y)$ denotes the noise rates of cleaned labels and $\hat{r} := (\hat{Y} = 1)$ denotes the ratio of positive tokens after token cleaning.

Conclusion: token cleaning is preferred when the positive impact of reducing noise rate outweighs the negative impact of reducing the number of feasible tokens.

Main Experiments

> Experimental Setup

• Base model: LLaMA-3.2-3B, LLaMA-3.1-8B, Mistral-7B-v0.3

• Data Pool: DS² 50k samples^[1]

Selected token proportion: 60%

Model	TruthfulQA	TydiQA	LoqiQA	MMLU	HellaSwag	ARC-C	BoolQ	AVG
Base model: LLaMA-3.2-3B								
BASE	39.39	21.10	22.17	56.29	55.24	42.20	72.95	44.19
DS^2 (10K)	43.35	41.20	24.96	56.93	55.64	44.62	74.80	48.79
FULL TOKENS (50K)	43.32	49.60	24.34	56.87	55.57	44.44	74.98	49.87
Uniform Random ($50 \text{K} \times 0.6$)	43.79	47.00	23.41	56.96	55.37	44.44	75.05	49.43
Rно	45.57	<u>53.60</u>	<u>26.05</u>	57.10	55.16	45.39	<u>77.36</u>	51.46
FIXED-MODEL CLEANING SELF-EVOLVING CLEANING	48.96 51.07	52.60 56.38	25.89 28.22	<u>57.09</u> 56.18	56.43 55.81	45.39 45.99	77.52 77.33	51.98 53.00
SELF-E VOLVING CLEANING	31.07	30.30	20,22	50.16	<u> </u>	43.77	11.33	33.00

Summary

- > We systematically analyze when and why SFT with the cleaned tokens outperforms the full tokens.
- Proposed token cleaning pipeline effectively remove uninformative tokens while preserving task-relevant information.
- Token cleaning pipeline further boost the performance of sample-level work.

https://github.com/UCSC-REAL/TokenCleaning

Code