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Text-to-Image (T2I) Diffusion Models

☐ Generates images aligned with given prompts
• It usually consists of variational autoencoder (VAE), text encoders and 

denoising network.
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Huge Text Encoders in T2I Diffusion Model

☐ Modern T2I diffusion models often have huge text encoders
• Although the text encoder requires relatively less computation during 

image synthesis, it accounts for a large proportion of the total 
parameters in the pipeline.
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FLOPs and parameter ratio of Stable Diffusion 3 (SD3)

Esser, Patrick, et al. "Scaling rectified flow transformers for high-resolution image synthesis." ICML. 2024.
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Compressing Text Encoder with Pruning

☐ Compressing text encoders in T2I diffusion models are under-
explored for memory efficient image synthesis
• Most previous works on compressing with pruning T2I diffusion models 

focuses on compressing denoising models.

• …yet text encoders occupy the most memory despite their lower 
computational cost.
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Here we propose Skrr, a block-wise pruning method tailored for 
text encoders in T2I diffusion models!
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Overall pipeline of Skrr
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Discrepancy Metrics

☐ Discrepancy Metrics
• 𝑓 = proj(𝐸 𝑐; 𝜃text ; 𝜃denoise)

• Metric1 𝑓𝑑𝑒𝑛𝑠𝑒 , 𝑓𝑠𝑘𝑖𝑝 : 1 −
𝑓𝑑𝑒𝑛𝑠𝑒⋅𝑓𝑠𝑘𝑖𝑝

𝑓𝑑𝑒𝑛𝑠𝑒 |𝑓𝑠𝑘𝑖𝑝|

• Metric2 𝑓𝑑𝑒𝑛𝑠𝑒 , 𝑓𝑠𝑘𝑖𝑝 : MSE(𝑓𝑑𝑒𝑛𝑠𝑒 , 𝑓𝑠𝑘𝑖𝑝)
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Metric1: 0.15

Metri𝑐2: 0.002

Metric1: 0.11

Metri𝑐2: 0.04
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Block Interaction and Beam Search

☐ There are some blocks with interactions
• Some blocks can be safely pruned individually, but issues arise when 

pruned together.

→It is necessary to consider multiple pruning paths simultaneously.

• We mitigated this by using a beam search-based algorithm.
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Overall pipeline of Skrr
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Theoretical Validation of Re-use

☐ Error bound of two transformers

9

Lemma 3.1 (Error bound of two transformers). Let ℳ: (𝑥, 𝜃) ↦ ℝ𝑑  be an 𝐿-block transformer with 

input 𝑥 ∈ ℝ𝑑  and parameter set 𝜃= (𝜃1, … , 𝜃𝐿) defined as:

ℳ = 𝐹𝐿 + 𝐼 ∘ (𝐹𝐿−1+𝐼 ∘ ⋯ ∘ (𝐹1 + 1))

where 𝐹𝑖: 𝑧𝑖 , 𝜃𝑖 ↦ ℝ𝑑  is the 𝑖-th block with parameters 𝜃𝑖, and 𝑧𝑖 ∈ ℝ𝑑 . Assume that 𝐹𝑖 is 𝐿𝑖-

Lipschitz in 𝑧𝑖 and 𝑀𝑖-Lipschitz in 𝜃𝑖, Then, for any two parameter sets 𝜃 = (𝜃1, … , 𝜃𝐿) and መ𝜃 =
(෢𝜃1, … , ෢𝜃𝐿), the following holds:

ℳ 𝑥; 𝜃 − ℳ 𝑥; መ𝜃 ≤ ෍

𝑖=1

𝐿

ෑ

𝑘=𝑖+1

𝐿

1 + 𝐿𝑘 𝑀𝑖||𝜃𝑖 − ෡𝜃𝑖||
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Theoretical Validation of Re-use

☐ Tighter error bound of Re-use
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Theorem 3.2 (Tighter error bound of Re-use). Under the assumptions of Lemma 3.1, let be the 𝜃𝑖
∗ 

parameters of the reused 𝐹𝑖. Define 𝑈𝑠𝑘𝑖𝑝  as the error bound for the compressed model with Skip 

alone and 𝑈𝑠𝑘𝑖𝑝, 𝑅𝑒−𝑢𝑠𝑒  as the error bound for the compressed model with Skip and Re-use. If  ||𝜃𝑖 −

𝜃𝑖
∗|| < ||𝜃𝑖|| then the following holds:

𝑈𝑠𝑘𝑖𝑝, 𝑅𝑒−𝑢𝑠𝑒 < 𝑈𝑠𝑘𝑖𝑝
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Quantitative Results - Performance
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☐ Experiments on PixArt-Σ

Men, Xin, et al. "Shortgpt: Layers in large language models are more redundant than you expect." arXiv preprint arXiv:2403.03853 (2024).

Yang, Yifei, Zouying Cao, and Hai Zhao. "Laco: Large language model pruning via layer collapse." arXiv preprint arXiv:2402.11187 (2024).

Zhang, Yang, et al. "Finercut: Finer-grained interpretable layer pruning for large language models." arXiv preprint arXiv:2405.18218 (2024).
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Quantitative Results - Efficiency
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☐ Experiments on PixArt-Σ
• Similar sparsity, number of parameters and memory usage.

• Slightly increased FLOPs due to Re-use phase
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Qualitative Results

☐ Experiments with various sparsity
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Qualitative Results

☐ Experiments with various baseline models (SD3, FLUX.1-dev)
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Ablation Study

☐ Ablation study on Re-use and the size of beam 𝑘.
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Effect of Re-use Effect of the size of beam 𝑘
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Thank You!

Skrr: Skip and Re-use Text Encoder Layers for 
Memory Efficient Text-to-Image Generation
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