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Markov Decision Process1 Introduction

• Markov Decision Process (MDP) is a framework used for modeling decision-making in various environments.They are capable of obtaining optimal or near-optimal policies in a stochastic dynamic.

(a) Autonomous driving (b) Robotics (c) Operation research (d) Reinforcement learning
Figure: Applications of MDP in different areas.
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The Challenge of MDPs1 Introduction
• Curse of dimensionality will occur when the number of possible states in the system grows exponentially withthe number of variables or components being modeled.

Figure: Autonomous driving

In the autonomous driving, we may need to consider
• vehicle position
• velocity
• orientation
• weather outside the car
• positions and velocities of other vehicles
• ...

If each variable has n possible values, the total size of thestate space S grows as nd, where d is the number of statevariables.
• The time complexity of the classical algorithmbecomes exponential in d.

4/59



Quantum Computation1 Introduction
For certain problems, quantum computing demonstrates a significant speedup over classical computing in terms oftime complexity.
(a). factorizing an integer N: quantum O(log N) vs. classical O

(
exp

(
1.9(log N)1/3

)
(log log N)2/3

);(b). solving a system of N linear equations: quantum O(log N) vs. classical Ω(N);— Suppose N = 220: Quantum: ≈ 20 hours vs. Classical: ≈ 119.7 years!(c). unstructured search within N items: quantumΘ(
√

N) vs. classical O(N).— Suppose N = 1, 000, 000: Quantum: 1000 seconds≈ 17 minutes vs. Classical: 1, 000, 000 seconds≈ 11.5 days!

(a) Integer factorization (b) Solving linear systems (c) Unstructured search
Figure: A small set of problems that can show quantum supremacy.
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Quantum Computers1 Introduction

• Quantum computers exploit quantum-mechanical phenomena, such as superposition and entanglement, toperform computation.
— Google’s Willow: It takes less than 5 minutes to finish random circuit sampling (RCS) task.— Classical supercomputer: 1025 years!

(a) IBM Condor (b) Google Willow (c) IonQ Forte (d) USTC Jiuzhang
Figure: The most advanced quantum computers/chips in the world.
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Quantum for MDPs1 Introduction
Many researchers have explored various quantum algorithms to reduce the time complexity of solving MDPs.
• Lack a concrete quantum algorithm/rigorious theoretical analysis;
• Only apply for a specific class of finite-horizon MDPs;
• Require exponential time complexity for general finite-horizon MDPs problem;
• Only tailored to infinite-horizon problems with a time-invariant value function.

— infinite-horizon MDPs: The process continues indefinitely vs. Finite-horizon MDPs: The process ends at a finite andfixed number of time steps.— Time-dependent MDPs: The environment changes as time progresses vs. Time-independent MDPs: Theenvironment is consistent across the time.

Can one design quantum algorithms that are more efficient than classical algorithms in solving general
“time-dependent” and “finite-horizon” MDPs?

Yes!
• Exact dynamics setting: The environment’s dynamics is fully known.
• Generative model setting: The environment’s dynamics is unknown.
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MDP Preliminaries2 Preliminaries
We define a time-dependent and finite-horizon MDP as a 5−tupleM = (S,A, {Ph}H−1

h=0 , {rh}H−1
h=0 ,H).

• State space S and action spaceA are discrete and finite sets.
• The total time step H is a finite positive integer.
• Ph(sh+1|sh, ah) is a transition probability.— Fix h, sh and ah, one can view Ph(sh+1|sh, ah) as a vector Ph|sh,ah

(sh+1).
• A reward rh(sh, ah) is a scalar in [0, 1].

Figure: An abstract illustration of time-dependent and finite-horizon MDP dynamics.
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MDP Preliminaries2 Preliminaries
Optimization goal:
• A policy π is a mapping from S × [H] toA, where [H] := {0, 1, . . . ,H − 1}.
• The policy space is defined as Π := AS×[H].
• Find a policy π that maximizes the expected cumulative reward (V-value function) over H time horizon for aninitial state s ∈ S.

argmax
π∈Π

Vπ
h (s) = E

[H−1∑
t=h

rt(st, at)|π, sh = s
]
. (1)

• Define the optimal value of an initial state s ∈ S at each time step h ∈ [H] of the finite-horizon MDPM as
V∗

h(s) := maxπ∈Π Vπ
h (s).• A policy π is an optimal policy π∗ if Vπ

0 = V∗
0 .• Similarly, Q-value function Qπ

h : S ×A → R is defined as
Qπ

h (s, a) := E
[H−1∑

t=h

rt(st, at)
∣∣π, sh = s, ah = a

]
, (2)

and Q∗
h(s, a) := maxπ∈Π Qπ

h (s, a).
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MDP Preliminaries: Finding the Shortest Path in a Maze2 Preliminaries
• States: Positions in the maze.• Actions: Movements (up, down, left, right).• Transition probabilities: It captures how reliable the robot’s movements are.• Reward function: rh(sh, ah) = 0 if sh is the exit; otherwise, rh(sh, ah) = −1.• Total time horizon: The total number of time steps the robot is allowed to act before the game ends.• Optimization goal: Find a policy π ∈ Π that minimizes the expected number of steps to reach the exit.

Figure: Robot-in-Maze Example: Find the shortest path.
11/59



Quantum Preliminaries2 Preliminaries
Qubits (Quantum Bits)
• A qubit |ψ⟩ is the basic unit of quantum information (vs.classical bit 0 or 1).
• Superposition property: |ψ⟩ = α |0⟩+ β |1⟩ = α

[
1
0

]
+ β

[
0
1

]
,

where α, β ∈ C are amplitudes satisfying |α|2 + |β|2 = 1.
• Measurement: observe |0⟩ or |1⟩ with |α|2 or |β|2 probability.

Unitary Operators
• Quantum computations are performed using unitary operators

U, where U†U = I.
• Example: Hadamard gate (H = 1√

2

[
1 1
1 −1

]
);

H |0⟩ = 1√
2

[
1 1
1 −1

] [
1
0

]
=

1√
2

[
1
1

]
=

1√
2
(|0⟩+ |1⟩).

Figure: A cat that is 50% likely dead and 50% likelyalive.

x

y

z

φ

θ

1

0

ψ

Figure: A geometrical representation of a qubit:bloch sphere.12/59



Quantum Preliminaries2 Preliminaries

How to encode a real number in quantum computing?
• For any non-negative real number k, the fixed-point binary representation of k would be written as

Bi[k] = k12q−p−1 + · · · kq−p20 + kq−p+12−1 + · · ·+ kq2−p = k1k2 · · · kq−p.kq−p+1 · · · kq,

where ki ∈ {0, 1} for all 1 ≤ i ≤ q.
— Example: When q = 7, p = 4, then Bi[5.75] = 101.1100.

• Then we encode the real number k with q qubits based on Bi[k] and write it as
|Bi[k]⟩q = |k1⟩ |k2⟩ · · · |kq⟩ ∈ C2q

.

For simplicity, we often omit the index q when writing the ket.
— Example: |Bi[5.75]⟩ = |1⟩ ⊗ |0⟩ ⊗ |1⟩ ⊗ |1⟩ ⊗ |1⟩ ⊗ |0⟩ ⊗ |0⟩ = |1⟩ |0⟩ |1⟩ |1⟩ |1⟩ |0⟩ |0⟩.

• We assume that q and p are large enough for the problem we consider so that there is no overflow in storingreal number.
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Quantum Preliminaries2 Preliminaries

How to encode a series of real numbers in quantum computing?
Definition (Quantum oracle for functions and vectors)

Let Ω be a finite set of size N and f ∈ RΩ (equivalently f : Ω→ R) where each entry of f is represented with aprecision of 2−p. A quantum oracle encoding f is a unitary matrix Bf : CN ⊗ C2q → CN ⊗ C2q such that
Bf : |i⟩ ⊗ |0⟩ 7→ |i⟩ ⊗ |Bi[f (i)]⟩ (3)

for all i ∈ [N], where Bi[f (i)] is the binary representation of f (i) with precision 2−p.
• Bf is often referred to as a binary oracle for the function/vector f .
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Background3 Exact Dynamics Setting
Under this setting, it is assumed that the dynamics of the environment is fully known to the agent.

Figure: An illustration and an example of time-dependent and finite-horizon MDP dynamics in the exact dynamics setting.

Definition (Classical oracle of time-dependent and finite-horizon MDP)

We define a classical oracle OM : S ×A× [H]× S → [0, 1]× [0, 1] for time-dependent and finite-horizon MDPs
OM : (s, a, h, s′) 7→

(
rh(s, a), Ph|s,a(s

′)
)
. (4)
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Classical Algorithm for Finite-horizon MDPs3 Exact Dynamics Setting

The Bellman optimality value operator T h : RS → RS is defined as
[T h(Vh+1)]s := max

a∈A
{rh(s, a) + PT

h|s,aVh+1}. (5)

Theorem: Bellman Optimality Equations [Bellman, 1957]
Suppose that VH = 0. The V-value functions satisfy Vh = V∗

h for all h ∈ [H] if and only if:
Vh = T h(Vh+1), ∀h ∈ [H]. (6)

Furthermore, the policy:
π(s, h) = argmax

a∈A

{
rh(s, a) + PT

h|s,aVh+1

} (7)
is an optimal policy.

17/59



Classical Algorithm for Finite-horizon MDPs3 Exact Dynamics Setting

Algorithm 1 Value Iteration (Backward Induction) Algorithm for Finite Horizon MDPs [Bellman, 1957]
1: Require: MDPM.
2: Initialize: VH ← 0
3: for h := H − 1, . . . ,0 do
4: for each s ∈ S do
5: for each a ∈ A do
6: Qh(s, a) = rh(s, a) +

∑
s′∈S

Ph|s,a(s′)Vh+1(s′)

7: end for
8: π(s, h) = argmax

a∈A
Qh(s, a)

9: Vh(s) = Qh
(

s, π(s, h)
)

10: end for
11: end for
12: Return: π, V0
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Classical Algorithm for Finite-horizon MDPs3 Exact Dynamics Setting
Definition (Classical oracle of time-dependent and finite-horizon MDP)

We define a classical oracle OM : S ×A× [H]× S → [0, 1]× [0, 1] for time-dependent and finite-horizon MDPs
OM : (s, a, h, s′) 7→

(
rh(s, a), Ph|s,a(s

′)
)
. (8)

• The classical value iteration algorithm requires
O(S2AH) (9)

queries to the oracle OM.— Taking maximum over the whole action space: O(A).— Computing the inner product PT
h|s,aVh+1: O(S).

— Updating all the values in Vh: O(S).— Updating H time horizons: O(H).• Assuming that it takes O(1) time to query the oracle OM once, the time complexity of the classical valueiteration algorithm is O(S2AH).

Can we design a quantum algorithm to reduce the time complexity of solving finite-horizon MDP, i.e., computing
an optimal policy π and optimal V-value function V∗

0?

19/59



Classical Algorithm for Finite-horizon MDPs3 Exact Dynamics Setting
Definition (Classical oracle of time-dependent and finite-horizon MDP)

We define a classical oracle OM : S ×A× [H]× S → [0, 1]× [0, 1] for time-dependent and finite-horizon MDPs
OM : (s, a, h, s′) 7→

(
rh(s, a), Ph|s,a(s

′)
)
. (8)

• The classical value iteration algorithm requires
O(S2AH) (9)

queries to the oracle OM.— Taking maximum over the whole action space: O(A).— Computing the inner product PT
h|s,aVh+1: O(S).

— Updating all the values in Vh: O(S).— Updating H time horizons: O(H).• Assuming that it takes O(1) time to query the oracle OM once, the time complexity of the classical valueiteration algorithm is O(S2AH).
Can we design a quantum algorithm to reduce the time complexity of solving finite-horizon MDP, i.e., computing

an optimal policy π and optimal V-value function V∗
0?

19/59



Quantum Oracle3 Exact Dynamics Setting
• Note that quantum computation are performed using unitary operators!

Definition (Classical oracle of time-dependent and finite-horizon MDP)
We define a classical oracle OM : S ×A× [H]× S → [0, 1]× [0, 1] for time-dependent and finite-horizon MDPs

OM : (s, a, h, s′) 7→
(

rh(s, a), Ph|s,a(s
′)
)
. (10)

Definition (Quantum oracle of time-dependent and finite-horizon MDP)

LetM be a time-dependent and finite-horizon MDP. A quantum oracle of such an MDP is a unitary matrix
OQM : CS ⊗ CA ⊗ CH ⊗ CS ⊗ C2q ⊗ C2q → CS ⊗ CA ⊗ CH ⊗ CS ⊗ C2q ⊗ C2q such that

OQM : |s⟩ |a⟩ |h⟩ |s′⟩ |0⟩ |0⟩ 7→ |s⟩ |a⟩ |h⟩ |s′⟩ |Bi[rh(s, a)]⟩ |Bi[Ph|s,a(s
′)]⟩ , (11)

for all (s, a, h, s′) ∈ S ×A× [H]× S , where Bi[rh(s, a)] and Bi[Ph|s,a(s′)] denote the fixed-point binaryrepresentation of rh(s, a) and Ph|s,a(s′).
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QuantumMaximum Searching Algorithm3 Exact Dynamics Setting

• Problem Formulation: For an unsorted vector f ∈ RN, one wants to find the index i such that f (i) = max
j∈[N]

f (j).

• Classical algorithm: Θ(N) queries to the vector f .
• Quantum maximum searching algorithm [Durr and Hoyer, 1999]: Θ(

√
N) queries to a quantum oracle Bf !— Suppose N = 1, 000, 000: Quantum: ≈ 42 days vs. Classical: ≈ 114 years!

• We use QMSδ{f (i) : i ∈ [N]} to denote the process of finding the index of the maximum value of a vector fwith a success probability at least 1− δ.
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Revisit the Classical Value Iteration Algorithm3 Exact Dynamics Setting

Algorithm 2 Value Iteration (Backward Induction) Algorithm for Finite Horizon MDPs [Bellman, 1957]
1: Require: MDPM.
2: Initialize: VH ← 0
3: for h := H − 1, . . . ,0 do
4: for each s ∈ S do
5: for each a ∈ A do
6: Qh(s, a) = rh(s, a) +

∑
s′∈S

Ph|s,a(s′)Vh+1(s′)

7: end for
8: π(s, h) = argmax

a∈A
Qh(s, a) ▷ Can we incorporate QMS in this step?

9: Vh(s) = Qh
(

s, π(s, h)
)

10: end for
11: end for
12: Return: π, V0
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Quantum Value Iteration Algorithm QVI-1(M, δ)3 Exact Dynamics Setting

Algorithm 3 Quantum Value Iteration Algorithm QVI-1(M, δ)

1: Require: MDPM, quantum oracle OQM, maximum failure probability δ ∈ (0, 1).
2: Initialize: ζ ← δ/(SH), V̂H ← 0.
3: for h := H − 1, . . . ,0 do
4: create a quantum oracle BV̂h+1

for vector V̂h+1 ∈ RS

5: ∀s ∈ S: create a quantum oracle BQ̂h,s
encoding vector Q̂h,s ∈ RA with OQM and BV̂h+1

satisfying
Q̂h,s(a)← rh(s, a) + PT

h|s,aV̂h+1

6: ∀s ∈ S: π̂(s, h)← QMSζ{Q̂h,s(a) : a ∈ A} ▷We apply QMS now!
7: ∀s ∈ S: V̂h(s)← Q̂h,s

(
π̂(s, h)

)
8: end for
9: Return: π̂, V̂0
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Theoretical Analysis on QVI-1(M, δ)Precise case

Theorem (Correctness of QVI-1)

The outputs π̂ and V̂0 satisfy that π̂ = π∗ and V̂0 = V∗
0 with a success probability at least 1− δ.

• QVI-1 can obtain optimal policy and V-value function.
Theorem (Complexity of QVI-1)

The quantum query complexity of QVI-1 in terms of the quantum oracle of MDPs OQM is

O(S2
√

AH log(SH/δ)).

• Classical value iteration algorithm: O(S2AH)
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Potential Problems in QVI-13 Exact Dynamics Setting
QVI-1 is advantageous for problems with a large action space.
• Natural language processing (NLP): Each text in a large dictionary corresponds to a distinct action.

For the problems that have large state spaces, QVI-1 become infeasible, because of its complexity of O(S2).
• Chess or Go: Each position in a vast board is represented as a state.
• Computing the inner product PT

h|s,aV̂h+1: O(S).
• Updating all values in V̂h: O(S).

(a) NLP (b) Chess (c) Go
Figure: Applications of QVI-1.
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Improvement on QVI-13 Exact Dynamics Setting
Observation: for obtaining an “ϵ-estimation of the mean” of n Boolean variables, quantum algorithms only need
Θ(min{ϵ−1, n}) queries to a binary oracle [Nayak and Wu, 1999, Beals et al., 2001].
• A quantum speedup is possible when estimating inner product PT

h|s,aV̂h+1.• We can only obtain a near-optimal policy.

Question
Does there exist an error-bounded quantum algorithm that can obtain ϵ-optimal policy π̂ and ϵ-optimal values
{V̂h}H−1

h=0 for an MDPM but only requires
Õ
(

Scpoly(√A,H, 1/ϵ)
) (12)

queries to the quantum oracle OQM, where 0 < c < 2?
Definition (ϵ-optimal value and policy)

• We define values {Vh}H−1
h=0 are ϵ-optimal if ∥∥V∗

h − Vh
∥∥
∞ ≤ ϵ for all h ∈ [H].

• A policy π is ϵ-optimal if ∥∥V∗
h − Vπ

h

∥∥
∞ ≤ ϵ.
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QuantumMean Estimation Algorithms3 Exact Dynamics Setting

Can we use existing quantum mean estimation algorithms [Montanaro, 2015, Cornelissen et al., 2022]?
• They require a probability oracle Up that encodes the probability distribution in the amplitude.
• We only have a binary oracle OQM that encodes the probability distribution in the ket |·⟩.

Definition (Quantum oracle for probability distribution)

Let Ω be a finite set of size N and p = (px)x∈Ω a discrete probability distribution on Ω. A quantum oracle encoding aprobability distribution p is a unitary matrix Up : CN ⊗ CJ → CN ⊗ CJ such that
Up : |0⟩ ⊗ |0⟩ 7→

∑
x∈Ω

√
px |x⟩ ⊗ |wx⟩ , (13)

where 0 ≤ J ∈ Z is arbitrary and |wx⟩ ∈ CJ are arbitrary junk state.
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New Quantum Subroutine: QuantumMean Estimation with Binary Oracle3 Exact Dynamics Setting
Theorem (QuantumMean Estimation with Binary Oracle)

Let Ω be a finite set with cardinality N, p = (px)x∈Ω a discrete probability distribution over Ω, and f : Ω→ R a
function. Suppose we have access to
• a binary oracle Bp encoding the probability distribution p,
• a binary oracle Bf encoding the function f .

If the function f satisfies f (x) ∈ [0, 1] for all x ∈ Ω, then the algorithm QMEBO requires O((
√

N
ϵ +

√
N
ϵ ) log(1/δ))

queries to Bp and Bf to put an estimate µ̂ of

µ = E[f (x)|x ∼ p] = pTf (14)
such that Pr(|µ̃− µ| < ϵ) > 1− δ for any δ > 0.

• We denote QMEBOδ(pTf ,Bp,Bf , ϵ) as an estimation of E[f (x)|x ∼ p], to error less than ϵ with probability atleast 1− δ, using QMEBO.
• QMEBOδ(PT

h|s,aV̂h+1,OQM,BV̂h+1
, ϵ) requires O(

√
S
ϵ ) queries to OQM.

— Computing precise value PT
h|s,aV̂h+1 requires O(S) queries to OQM.
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Revisit the Quantum Value Iteration Algorithm QVI-1(M, δ)3 Exact Dynamics Setting

Algorithm 4 Quantum Value Iteration Algorithm QVI-1(M, δ)

1: Require: MDPM, quantum oracle OQM, maximum failure probability δ ∈ (0, 1).
2: Initialize: ζ ← δ/(SH), V̂H ← 0.
3: for h := H − 1, . . . ,0 do
4: create a quantum oracle BV̂h+1

for vector V̂h+1 ∈ RS

5: ∀s ∈ S: create a quantum oracle BQ̂h,s
encoding vector Q̂h,s ∈ RA with OQM and BV̂h+1

satisfying
Q̂h,s(a)← rh(s, a) + PT

h|s,aV̂h+1 ▷ Can we incorporate QMEBO in this step?
6: ∀s ∈ S: π̂(s, h)← QMSζ{Q̂h,s(a) : a ∈ A}
7: ∀s ∈ S: V̂h(s)← Q̂h,s

(
π̂(s, h)

)
8: end for
9: Return: π̂, V̂0
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Quantum Value Iteration Algorithm QVI-2(M, ϵ, δ)3 Exact Dynamics Setting
Algorithm 5 Quantum Value Iteration Algorithm QVI-2(M, ϵ, δ)

1: Require: MDPM, quantum oracle OQM, maximum error ϵ ∈ (0,H], failure probability δ ∈ (0, 1).
2: Initialize: ζ ← δ/

(
4c̃SA1.5H log(1/δ)

), V̂H ← 0.
3: for h := H − 1, . . . ,0 do
4: create a quantum oracle BṼh+1

encoding Ṽh+1 ∈ [0, 1]S defined by Ṽh+1 ← V̂h+1/H

5: ∀s ∈ S: create a quantum oracle Bzh,s encoding zh,s ∈ RA defined by
zh,s(a)← H · QMEBOζ(PT

h|s,aṼh+1,OQM,BṼh+1
, ϵ

2H2 )− ϵ
2H

6: ∀s ∈ S: create quantum oracle BQ̂h,s
encoding Q̂h,s ∈ RA with OQM and Bzh,s satisfying

Q̂h,s(a)← max{rh(s, a) + zh,s(a), 0}
7: ∀s ∈ S: π̂(s, h)← QMSδ{Q̂h,s(a) : a ∈ A}
8: ∀s ∈ S: V̂h(s)← Q̂h,s

(
π̂(s, h)

)
9: end for
10: Return: π̂, {V̂h}H−1

h=0

• zh,s(a) can be regarded as an ϵ
H -approximation of PT

h|s,aV̂h+1.
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High-level Idea of QVI-2(M, ϵ, δ)3 Exact Dynamics Setting
Note that the classical value iteration algorithm and QVI-1 follows the same idea:
• Initialize VH = 0.
• Repeatedly apply the Bellman recursion Vh = T h(Vh+1) for all h ∈ [H], where

[T h(Vh+1)]s = max
a∈A
{rh(s, a) + PT

h|s,aVh+1},∀s ∈ S. (15)
Idea of QVI-2:
• The Monotonicity Technique: Instead of computing the precise value of PT

h|s,aVh+1, QMEBO computes an
estimate zh,s(a) with one-sided error satisfying

PT
h|s,aVh+1 −

ϵ

H
≤ zh,s(a) ≤ PT

h|s,aVh+1. (16)
• Control the error in each step to be ϵ

H so that the total error after H steps remains ϵ.
The quantum speedup of QVI-2:
• QMEBO: O(

√
S) vs. precise value: O(S).

• QMS: O(
√

A) vs. Classical: O(A).
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Theoretical Analysis on QVI-23 Exact Dynamics Setting
Theorem (Correctness of QVI-2(M, ϵ, δ))

The outputs π̂ and {V̂h}H−1
h=0 satisfy that

V∗
h − ϵ ≤ V̂h ≤ Vπ̂

h ≤ V∗
h (17)

for all h ∈ [H] with a success probability at least 1− δ.

• The inequality V̂h ≤ Vπ̂
h comes from the one-sided error, i.e. the monotonicity technique.

Theorem (Complexity of QVI-2(M, ϵ, δ))

The quantum query complexity of QVI-2(M, ϵ, δ) in terms of the quantum oracle of MDPs OQM is

O
(S1.5

√
AH3 log

(
SA1.5H/δ

)
ϵ

)
. (18)

• QVI-2(M, ϵ, δ) successfully achieves our optimization goal!
• QVI-2 achieves significantly higher computational efficiency than the classical value iteration algorithm,particularly in problems characterized by a large state and action space but a short time horizon H.
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Classical Lower Bound3 Exact Dynamics Setting

Theorem (Classical Lower Bound in the Exact Dynamics Setting)

Let S andA be finite sets of states and actions. Let H ≥ 2 be a positive integer and ϵ ∈ (0, H−1
4 ) be an error

parameter. We consider the following time-dependent and finite-horizon MDPM = (S,A, {Ph}H−1
h=0 , {rh}H−1

h=0 ,H),
where rh ∈ [0, 1]S×A for all h ∈ [H].
• Given access to a classical oracle OM, any algorithmK, which takesM as an input and outputs
ϵ-approximations of {V∗

h}
H−1
h=0 or π∗ with probability at least 0.9, must call the classical oracle OM at least

Ω(S2A) (19)
times on the worst case of inputM.

• Provided H and ϵ are constants, the quantum query complexities of QVI-1 and QVI-2 are O(S2
√

A) and
O(S1.5

√
A), respectively.

• Quantum algorithms can solve finite-horizon MDPs with query complexity in terms of S and A that lies in aregime provably inaccessible to any classical algorithm!
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Summary3 Exact Dynamics Setting

Goal:
Query Complexity

Classical Quantum Upper Bound
Upper bound Lower bound

optimal π∗, V∗
0 S2AH S2A S2

√
AH [QVI-1]

ϵ-accurate estimate
of π∗ and {V∗

h}
H−1
h=0

S2AH S2A S1.5
√

AH3

ϵ [QVI-2]

Table: Classical and quantum query complexities for different algorithms solving time-dependent and finite-horizon MDPs inthe exact dynamics setting. All quantum upper bounds are Õ(·) assuming a constant failure probability δ. The range of errorterm ϵ is (0,H]. The classical upper bounds are O(·), derived from the value iteration algorithm in Section 4.5 in[Bellman, 1957].
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Background4 Generative Model Setting
• The prior exact dynamics model is not always readily available in a complex environment.• In this setting, it is assumed that the dynamics of the environment are unknown to the agent.

Figure: An illustration and an example of time-dependent and finite-horizon MDP dynamics in the generative model setting.

Figure: The agent can query a generative model to sample transitions for specific state-action pairs in each time horizon
h ∈ [H].
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Classical and Quantum Generative OracleGenerative Model Setting
• A classical generative oracle for the finite-horizon MDP is able to generate N independent samples for eachtriple (s, a, h) ∈ S ×A× [H] as follows

si
h(s, a) i.i.d.∼ Ph(·|s, a), i = 1, ...,N. (20)

• A quantum generative oracle for the finite-horizon MDP is defined as follows.
Definition (Quantum generative oracle of an MDP)

The quantum generative oracle of a time-dependent and finite-horizon MDPM is a unitary matrix
G : CS ⊗ CA ⊗ CH ⊗ CS ⊗ CJ → CS ⊗ CA ⊗ CH ⊗ CS ⊗ CJ satisfying

G : |s⟩ ⊗ |a⟩ ⊗ |h⟩ ⊗ |0⟩ ⊗ |0⟩ 7→ |s⟩ ⊗ |a⟩ ⊗ |h⟩ (
∑

s′

√
Ph|s,a(s′) |s′⟩ ⊗ |ws′⟩), (21)

where 0 ≤ J ∈ Z is arbitrary and |ws′⟩ ∈ CJ are arbitrary.
• Optimization goal: Given the generated data samples, we want to obtain ϵ-optimal policy π̂, V-value functions
{V̂h}H−1

h=0 and Q-value functions {Q̂h}H−1
h=0 .

37/59



Classical and Quantum Generative OracleGenerative Model Setting
• A classical generative oracle for the finite-horizon MDP is able to generate N independent samples for eachtriple (s, a, h) ∈ S ×A× [H] as follows

si
h(s, a) i.i.d.∼ Ph(·|s, a), i = 1, ...,N. (20)

• A quantum generative oracle for the finite-horizon MDP is defined as follows.
Definition (Quantum generative oracle of an MDP)

The quantum generative oracle of a time-dependent and finite-horizon MDPM is a unitary matrix
G : CS ⊗ CA ⊗ CH ⊗ CS ⊗ CJ → CS ⊗ CA ⊗ CH ⊗ CS ⊗ CJ satisfying

G : |s⟩ ⊗ |a⟩ ⊗ |h⟩ ⊗ |0⟩ ⊗ |0⟩ 7→ |s⟩ ⊗ |a⟩ ⊗ |h⟩ (
∑

s′

√
Ph|s,a(s′) |s′⟩ ⊗ |ws′⟩), (21)

where 0 ≤ J ∈ Z is arbitrary and |ws′⟩ ∈ CJ are arbitrary.
• Optimization goal: Given the generated data samples, we want to obtain ϵ-optimal policy π̂, V-value functions
{V̂h}H−1

h=0 and Q-value functions {Q̂h}H−1
h=0 .

37/59



QuantumMean EstimationGenerative Model Setting

Theorem (Quantum mean estimation [Montanaro, 2015])

There are two quantum algorithms, denoted as QME1 and QME2, with the following properties. Let Ω be a finite
set, p = (px)x∈Ω a discrete probability distribution over Ω, and f : Ω→ R a function. Assume access to
• a probability oracle Up for the probability distribution p;
• a binary oracle Bf for the function f .

Then,
1. For a function f satisfying 0 ≤ f (x) ≤ u for all x ∈ Ω, QME1 requires O

(u
ϵ +

√u
ϵ

)
invocations of Up and Bf ,

2. For a function f satisfying Var[f (x) | x ∼ p] ≤ σ2, QME2 needs O
(
σ
ϵ log

2(σϵ )
)
invocations of Up and Bf ,

to output an estimate µ̃ of µ = E[f (x) | x ∼ p] = pTf satisfying Pr(|µ̃− µ| > ϵ) < 1/3. Furthermore, by repeating
either QME1 or QME2 a total of O(log(1/δ)) times and taking the median of the outputs, one can obtain another
estimate µ̂ of µ such that Pr(|µ̂− µ| < ϵ) > 1− δ.

We denote QME{i}δ(pTv, ϵ) as an estimate of the mean f (x), with x distributed as p, to error less than ϵ withprobability at least 1− δ, using QME{i} for i ∈ {1, 2}.
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QuantumMean Estimation QME1Generative Model Setting

For a random variable X ∈ [0, u], one wants to obtain an ϵ-estimation of E[X], where ϵ ∈ (0, u].
• Hoeffding’s inequality implies that O(u2/ϵ2) classical samples are required.
• QME1 only requires O(u/ϵ) quantum samples.
• QME1 is a quantum version of Hoeffding’s inequality.

Lemma: Hoeffding’s inequality
Let X1, X2, . . . , Xn be independent and identically distributed random variables such that 0 ≤ Xi ≤ u and true mean
E[Xi] = µ for all i. Let X̂n = 1

n(X1 + X2 + · · ·+ Xn) be the sample mean. Then the Hoeffding’s inequality states:
P(|X̂n − µ| ≥ ϵ) ≤ 2 exp

(
−2nϵ2

u2

)
. (22)
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QuantumMean Estimation QME2Generative Model Setting

For a random variable X with finite non-zero variance σ2, one wants to obtain an ϵ-estimation of E[X], where
ϵ ∈ (0, σ].
• Chebyshev’s inequality implies that O(σ2/ϵ2) classical samples are required.
• QME2 only requires Õ(σ/ϵ) quantum samples.
• QME2 is a quantum version of Chebyshev’s inequality.

Lemma: Chebyshev’s inequality
Let X1, X2, . . . , Xn be independent and identically distributed random variables such that true mean E[Xi] = µ andtrue variance Var[Xi] = σ2 for all i. Let X̂n = 1

n(X1 + X2 + · · ·+ Xn) be the sample mean. Then the Chebyshev’sinequality states:
P(|X̂n − µ| ≥ ϵ) ≤

Var[X̂n]

ϵ2 =
σ2

nϵ2 . (23)
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Quantum Value Iteration Algorithm QVI-3(M, ϵ, δ)4 Generative Model Setting
Algorithm 6 Quantum Value Iteration Algorithm QVI-3(M, ϵ, δ)

1: Require: MDPM, generative model G, maximum error ϵ ∈ (0,H], maximum failure probability δ ∈ (0, 1).
2: Initialize: ζ ← δ/

(
4c̃SA1.5H log(1/δ)

), V̂H ← 0.
3: for h := H − 1, . . . ,0 do
4: create a quantum oracle BV̂h+1

encoding V̂h+1 ∈ RS

5: ∀s ∈ S : create a quantum oracle Bzh,s encoding zh,s ∈ RA with G and BV̂h+1
satisfying

zh,s(a)← QME1ζ
(
(PT

h|s,aV̂h+1),
ϵ

2H

)
− ϵ

2H ▷We replace QMEBO with QME1.
6: create a quantum oracle Brh encoding rh ∈ RS×A

7: ∀s ∈ S : create a quantum oracle BQ̂h,s
encoding Q̂h,s ∈ RA with Brh and Bzh,s satisfying

Q̂h,s(a)← max{rh(s, a) + zh,s(a), 0}
8: ∀s ∈ S : π̂(s, h)← QMSδ{Q̂h,s(a) : a ∈ A}
9: ∀s ∈ S : V̂h(s)← Q̂h,s

(
π̂(s, h)

)
10: end for
11: Return: π̂, {V̂h}H−1

h=0
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High-level Idea of QVI-3(M, ϵ, δ)4 Generative Model Setting
QVI-3 shares a similar idea as QVI-2:
• Initialize VH = 0.
• Repeatedly apply the Bellman recursion Vh = T h(Vh+1) for all h ∈ [H], where

[T h(Vh+1)]s = max
a∈A
{rh(s, a) + PT

h|s,aVh+1}, ∀s ∈ S. (24)
• The Monotonicity Technique: Instead of computing the precise value of PT

h|s,aVh+1, QME1 computes an
estimate zh,s(a) with one-sided eror satisfying

PT
h|s,aVh+1 −

ϵ

H
≤ zh,s(a) ≤ PT

h|s,aVh+1. (25)
• Control the error in each step to be ϵ

H so that the total error after H steps remains ϵ.
• Apply QMS to find the action π(s, h) = argmaxa∈A{rh(s, a) + PT

h|s,aVh+1}.The quantum speedup of QVI-3:
• QME1: O(

√
H2

ϵ2/H2 ) = O(H2

ϵ ) vs. Hoeffding’s inequality: O( H2

ϵ2/H2 ) = O(H4

ϵ2 ).
• QMS: O(

√
A) vs. Classical: O(A).

42/59



Theoretical Analysis on QVI-3(M, ϵ, δ)4 Generative Model Setting
Theorem (Correctness of QVI-3(M, ϵ, δ))

The outputs π̂ and {V̂h}H
h=0 satisfy that

V∗
h − ϵ ≤ V̂h ≤ Vπ̂

h ≤ V∗
h (26)

for all h ∈ [H] with a success probability at least 1− δ.

• The inequality V̂h ≤ Vπ̂
h comes from the one-sided error technique, i.e. the monotonicity technique.

Theorem (Complexity of QVI-3(M, ϵ, δ))

The quantum query complexity of QVI-3(M, ϵ, δ) in terms of the quantum generative oracle of MDPs G is

O
(S
√

AH3 log
(

SA1.5H/δ
)

ϵ

)
. (27)

• A classical algorithm [Sidford et al., 2023] requires Õ( SAH5

ϵ2 ) queries to the classical generative model G.
• The state-of-the-art (SOTA) classical algorithm [Li et al., 2020] requires Õ( SAH4

ϵ2 ) queries to the classicalgenerative model G.
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Improvement on QVI-34 Generative Model Setting

Note that QVI-3 only outputs ϵ-optimal policy and V-value functions.
• Can we obtain ϵ-optimal Q-value functions with QVI-3?
• Yes, but Õ( S

√
AH3

ϵ )→ Õ( SAH3

ϵ ), because Q-value functions Qh ∈ RS×A, h ∈ [H].
• Our quantum lower bounds also confirms that the O(A) dependence of the quantum sample complexity isunavoidable.

QVI-4: (a) outputs the ϵ-optimal policy, V-value functions, and Q-value functions; (b) achieves a better dependenceon H than QVI-3 by adapting the following classical techniques [Sidford et al., 2018] in a quantum setting.
• The monotonicity technique
• The variance reduction technique
• The total-variance technique
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Variance ReductionGenerative Model Setting
• Main Idea: Enhance efficiency over standard value iteration
• Goal: Achieve target error ϵ with K = O(log(H/ϵ)) epochs
• Strategy:

— Decrease error: ϵk = ϵk−1/2, ending at ϵK = ϵ.— Outputs per epoch k: ϵk-optimal Vk,h, Qk,h, and policy πk.— Only increase a log term in query complexity.
• Rewrite the Bellman recursion:

— Standard Bellman recursion: (1) Initialize VH = 0; (2) Repeatedly apply the Bellman recursion Vh = T h(Vh+1),where T h : RS → RS is defined as
[T h(Vh+1)]s := max

a∈A
{rh(s, a) + PT

h|s,aVh+1}, (28)
for all s ∈ S.— Rewriting: (1) Repeat the standard Bellman recursion for K times: Vh → Vk,h; (2) Rewrite the Bellman recursion:

PT
h|s,aVk,h+1 = PT

h|s,a(Vk,h+1 − V(0)
k,h+1) + PT

h|s,aV(0)
k,h+1, (29)

where V(0)
k,h+1 is the initial V-value from epoch k− 1.
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Variance ReductionGenerative Model Setting

• Estimation approach: Individually estimate the twoterms of the RHS of Eq. (29) with an error ϵk/(2H).
• PT

h|s,a(Vk,h+1 − V(0)
k,h+1):

— Condition: 0 ≤ Vk,h+1 − V(0)
k,h+1 ≤ c̃ϵk— Classical: O(H2) samples —Quantum: O(H) samples

• PT
h|s,aV(0)

k,h+1:
— Condition: 0 ≤ V(0)

k,h+1 ≤ H
— Classical: O(H4/ϵ2

k)—Quantum: O(H2/ϵk)• Overall complexity:
— Classical: Õ(SAH5/ϵ2

k)— Quantum: Õ(SAH3/ϵk)

• Key advantage: Quantum subroutine QME1 reducescomplexity (H5 → H3 and 1/ϵ2
k → 1/ϵk).

• Limitation: No A to√A speedup (estimates allQ-values)
• Comparison: No additional H speedup vs. QVI-3
• Future benefit: Combines with total variancetechnique for greater gains
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Total Variance TechniqueGenerative Model Setting

• Core insight: The propagation of errors across the H steps is smaller than assumed!
• Previous error: ϵk/(2H) per step for µs,a

k,h = PT
h|s,aV(0)

k,h+1 → accumulated error over H steps is ϵk/2.
• New error: Relax to ϵkσ

s,a
k,h/(2H1.5), where σs,a

k,h = [σh(V
(0)
k,h+1)](s, a)

— Max error: ϵk/(2
√

H)— Since ϵkσ
s,a
k,h/(2H1.5) > ϵk/(2H), the sample complexity can be reduced.

• Total error over H steps: Still bounded by ϵk/2 (via Lemma on total variance upper bound: ∑H−1
h=0 σ

s,a
k,h ≤ H1.5)

• Classical sample complexity [Sidford et al., 2018]:
— Chebyshev’s inequality: O(SA(σs,a

k,h)
2(ϵσs,a

k,h/H1.5)−2) = O(SAH3/ϵ2) samples per time step and Õ(SAH4/ϵ2) overall.
— Classical sample complexity without total variance technique: Õ(SAH5/ϵ2).

• Quantum sample complexity:
— QME2: Õ(SAH1.5/ϵ) samples per time step and Õ(SAH2.5/ϵ) overall.

47/59



Quantum Value Iteration Algorithm QVI-4(M, ϵ, δ)Generative Model Setting
Algorithm 7 Quantum Value Iteration Algorithm QVI-4(M, ϵ, δ)

1: Require: MDPM, generative model G, maximum error ϵ ∈ (0,
√

H], maximum failure probability δ ∈ (0, 1).
2: Initialize: K ← ⌈log2(H/ϵ)⌉+ 1, ζ ← δ/4KHSA, c = 0.001, b = 1
3: Initialize: ∀h ∈ [H] : V(0)

0,h ← 0; ∀s ∈ S, h ∈ [H] : π
(0)
0 (s, h)← arbitrary action a ∈ A.

4: for k = 0, . . . ,K − 1 do
5: ϵk ← H/2k,Vk,H ← 0,V(0)

k,H ← 0

6: ∀(s, a, h) ∈ S ×A× [H] : yk,h(s, a)← max
{
QME1ζ

(
PT

h|s,a(V
(0)
k,h+1)

2, b
)
−

(
QME1ζ(PT

h|s,aV(0)
k,h+1, b/H)

)2
, 0
}

7: ∀(s, a, h) ∈ S ×A× [H] : xk,h(s, a)← QME2ζ
(

PT
h|s,aV(0)

k,h+1, cH−1.5ϵ
√

yk,h(s, a) + 4b
)
− cH−1.5ϵ

√
yk,h(s, a) + 4b

8: for h := H − 1, . . . , 0 do
9: ∀(s, a) ∈ S ×A : gk,h(s, a)← QME1ζ

(
PT

h|s,a(Vk,h+1 − V(0)
k,h+1), cH−1ϵk

)
− cH−1ϵk

10: ∀(s, a) ∈ S ×A : Qk,h(s, a)← max{rh(s, a) + xk,h(s, a) + gk,h(s, a), 0}
11: ∀s ∈ S : Ṽk,h(s)← Vk,h(s)← [V(Qk,h)]s, π̃k(s, h)← πk(s, h)← [π(Qk,h)]s

12: ∀s ∈ S : if Ṽk,h(s) ≤ V(0)
k,h (s), then Vk,h(s)← V(0)

k,h (s) and πk(s, h)← π
(0)
k (s, h)

13: end for
14: ∀h ∈ [H] : V(0)

k+1,h ← Vk,h and π(0)
k+1(·, h)← πk(·, h)

15: end for
16: Return: π̂ := πK−1, {V̂h}H−1

h=0 := {VK−1,h}H−1
h=0 , {Q̂h}H−1

h=0 := {QK−1,h}H−1
h=0
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Analysis of QVI-4(M, ϵ, δ)Generative Model Setting
Theorem (Correctness of QVI-4(M, ϵ, δ))

The outputs π̂, {V̂h}H
h=0 and {Q̂h}H

h=0 satisfy that

V∗
h − ϵ ≤ V̂h ≤ Vπ̂

h ≤ V∗
h (30)

Q∗
h − ϵ ≤ Q̂h ≤ Qπ̂

h ≤ Q∗
h (31)

for all h ∈ [H] with a success probability at least 1− δ.

Theorem (Complexity of QVI-4(M, ϵ, δ))

The quantum query complexity of QVI-4(M, ϵ, δ) in terms of the quantum generative oracle of MDPs G is

O
(

SA(
H2.5

ϵ
+ H3) log2(

H1.5

ϵ
) log

(
log

(
H
ϵ

)
HSA/δ

))
. (32)

• The best classical algorithm [Li et al., 2020] requires Õ( SAH4

ϵ2 ) queries to a classical generative model G.
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Lower Bounds for time-dependent and finite-horizon MDPGenerative Model Setting

Theorem (Classical lower bound for finite-horizon MDPs)

Let S andA be finite sets of states and actions. Let H > 0 be a positive integer and ϵ ∈ (0, 1/2) be an error
parameter. We consider the following time-dependent and finite-horizon MDPM = (S,A, {Ph}H−1

h=0 , {rh}H−1
h=0 ,H),

where rh ∈ [0, 1]S×A for all h ∈ [H].
• Given access to a classical generative oracle G, any algorithmK, which takesM as an input and outputs
ϵ-approximations of {Q∗

h}
H−1
h=0 {V

∗
h}

H−1
h=0 or π∗ with probability at least 0.9, must call the classical generative

oracle G at least

Ω(
SAH3

ϵ2 log3(ϵ−1)
) (33)

times on the worst case of inputM.
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Lower Bounds for time-dependent and finite-horizon MDPGenerative Model Setting
Theorem (Quantum lower bound for finite-horizon MDPs)

Let S andA be finite sets of states and actions. Let H > 0 be a positive integer and ϵ ∈ (0, 1/2) be an error
parameter. We consider the following time-dependent and finite-horizon MDPM = (S,A, {Ph}H−1

h=0 , {rh}H−1
h=0 ,H),

where rh ∈ [0, 1]S×A for all h ∈ [H].
• Given access to a quantum generative oracle G, any algorithmK, which takesM as an input and outputs
ϵ-approximations of {Q∗

h}
H−1
h=0 with probability at least 0.9, must call the quantum generative oracle at least

Ω(
SAH1.5

ϵ log1.5(ϵ−1)
) (34)

times on the worst case of inputM. Besides, any algorithmK, which takesM as an input and outputs
ϵ-approximations of {V∗

h}
H−1
h=0 or π∗ with probability at least 0.9, must call the quantum generative oracle G at

least

Ω(
S
√

AH1.5

ϵ log1.5(ϵ−1)
) (35)

times on the worst case of inputM.
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SummaryGenerative Model Setting
Goal:obtain an

ϵ-accurateestimate of
Classical sample complexity Quantum sample complexity

Upper bound Lower bound Upper bound Lower bound
{Q∗

h}
H−1
h=0

SAH4

ϵ2 [Li et al., 2020] SAH3

ϵ2 [Theorem 21] SAH2.5

ϵ [QVI-4] SAH1.5

ϵ [Theorem 21]

π∗, {V∗
h}

H−1
h=0

SAH4

ϵ2 [Li et al., 2020] SAH3

ϵ2 [Theorem 21]
SAH2.5

ϵ [QVI-4]
S
√

AH1.5

ϵ [Theorem 21]
S
√

AH3

ϵ [QVI-3]
Table: Classical and quantum sample complexities for solving time-dependent and finite-horizon MDPs in the generative modelsetting. The classical lower bound for π∗ and {V∗

h}
H−1
h=0 was shown in [Sidford et al., 2018].

• QVI-3 and QVI-4 are nearly (asymptotically) optimal (up to log terms) in computing near-optimal V/Q valuefunctions and policies, provided the time horizon H is a constant.
• Our quantum lower bounds rule out the possibility of exponential quantum speedups.
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Conclusion and Future Work5 Conclusion

Goal:
Query Complexity

Classical Quantum
upper bound lower bound upper bound lower bound

optimal π∗, V∗
0 S2AH S2A S2

√
AH [QVI-1] ?

ϵ-accurate estimate of π∗ and {V∗
h}

H−1
h=0 S2AH S2A S1.5

√
AH3

ϵ [QVI-2] ?

Table: Classical and quantum query complexities for different algorithms solving time-dependent and finite-horizon MDPs inthe exact dynamics setting. All quantum upper bounds are Õ(·) assuming a constant failure probability δ. The range of errorterm ϵ is (0,H]. The classical upper bounds are O(·), derived from the classical value iteration algorithm in [Bellman, 1957].

• What are the quantum lower bounds in the exact dynamics setting?
• What are the potential applications of the new quantum subroutines, QMEBO, and the quantum valueiteration algorithms, QVI-1 and QVI-2?
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Conclusion and Future Work5 Conclusion
Goal:obtain an

ϵ-accurateestimate of
Classical sample complexity Quantum sample complexity

Upper bound Lower bound Upper bound Lower bound
{Q∗

h}
H−1
h=0

SAH4

ϵ2 [Li et al., 2020] SAH3

ϵ2 [Theorem 21] SAH2.5

ϵ [QVI-4] SAH1.5

ϵ [Theorem 21]

π∗, {V∗
h}

H−1
h=0

SAH4

ϵ2 [Li et al., 2020] SAH3

ϵ2 [Theorem 21]
SAH2.5

ϵ [QVI-4]
S
√

AH1.5

ϵ [Theorem 21]
S
√

AH3

ϵ [QVI-3]
Table: Classical and quantum sample complexities for solving time-dependent and finite-horizon MDPs in the generative modelsetting. The classical lower bound for π∗ and {V∗

h}
H−1
h=0 was shown in [Sidford et al., 2018].

• Can we design optimal quantum algorithms whose quantum sample complexities are the same as thequantum lower bounds?
• What are the potential applications of QVI-3 and QVI-4?
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Quantum Algorithms for Finite-horizon MarkovDecision Processes
Thank you for listening!

Any questions?
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