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Markov Decision Process

1 Introduction

e Markov Decision Process (MDP) is a framework used for modeling decision-making in various environments.
They are capable of obtaining optimal or near-optimal policies in a stochastic dynamic.

(a) Autonomous driving (b) Robotics (c) Operation research (d) Reinforcement learning

Figure: Applications of MDP in different areas.
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The Challenge of MDPs

1 Introduction

e Curse of dimensionality will occur when the number of possible states in the system grows exponentially with
the number of variables or components being modeled.
In the autonomous driving, we may need to consider

e vehicle position

e velocity

e orientation

e weather outside the car

e positions and velocities of other vehicles

If each variable has n possible values, the total size of the
state space S grows as nd, where d is the number of state
variables.

e The time complexity of the classical algorithm
becomes exponential in d.

Figure: Autonomous driving
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Quantum Computation

1 Introduction

For certain problems, quantum computing demonstrates a significant speedup over classical computing in terms of
time complexity.
(a). factorizing an integer N: quantum O(log N) vs. classical O(exp(1.9(log N)'/3) (log log N)?/3);
(b). solving a system of N linear equations: quantum O(log N) vs. classical 2(N);
— Suppose N = 22%: Quantum: ~ 20 hours vs. Classical: ~ 119.7 years!
(c). unstructured search within N items: quantum ©(+/N) vs. classical O(N).
— Suppose N = 1,000, 000: Quantum: 1000 seconds ~ 17 minutes vs. Classical: 1,000, 000 seconds =~ 11.5 days!

1320

@/ \330 Solving Linear Systems
7\ 0O 1 2 3 4 5
® 2x + Ty = 34
X + = -
& x Y 5 a - [z ][]z [e0 [ae ][]
N\ 5x - 4y = -1
@ @ Unsorted Array
(a) Integer factorization (b) Solving linear systems (c) Unstructured search

Figure: A small set of problems that can show quantum supremacy.
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Quantum Computers

1 Introduction

e Quantum computers exploit quantum-mechanical phenomena, such as superposition and entanglement, to
perform computation.
— Google's Willow: It takes less than 5 minutes to finish random circuit sampling (RCS) task.
— Classical supercomputer: 102° years!

(a) IBM Condor (b) Google Willow (c) lonQ Forte (d) USTC Jiuzhang

Figure: The most advanced quantum computers/chips in the world.
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Quantum for MDPs

1 Introduction

Many researchers have explored various quantum algorithms to reduce the time complexity of solving MDPs.
e Lack a concrete quantum algorithm/rigorious theoretical analysis;
e Only apply for a specific class of finite-horizon MDPs;

e Require exponential time complexity for general finite-horizon MDPs problem;

e Only tailored to infinite-horizon problems with a time-invariant value function.
— infinite-horizon MDPs: The process continues indefinitely vs. Finite-horizon MDPs: The process ends at a finite and

fixed number of time steps.
— Time-dependent MDPs: The environment changes as time progresses vs. Time-independent MDPs: The

environment is consistent across the time.
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Quantum for MDPs

1 Introduction

Many researchers have explored various quantum algorithms to reduce the time complexity of solving MDPs.
e Lack a concrete quantum algorithm/rigorious theoretical analysis;
e Only apply for a specific class of finite-horizon MDPs;

e Require exponential time complexity for general finite-horizon MDPs problem;

e Only tailored to infinite-horizon problems with a time-invariant value function.
— infinite-horizon MDPs: The process continues indefinitely vs. Finite-horizon MDPs: The process ends at a finite and

fixed number of time steps.
— Time-dependent MDPs: The environment changes as time progresses vs. Time-independent MDPs: The
environment is consistent across the time.

Can one design quantum algorithms that are more efficient than classical algorithms in solving general
“time-dependent” and “finite-horizon” MDPs?

Yes!
e Exact dynamics setting: The environment’s dynamics is fully known.
e Generative model setting: The environment’s dynamics is unknown.
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MDP Preliminaries

2 Preliminaries
We define a time-dependent and finite-horizon MDP as a 5—tuple M = (S, A, {Pn}i 5, {rn 11—y, H).
e State space S and action space A are discrete and finite sets.

e The total time step H is a finite positive integer.
Pp(sp11|sh, an) is a transition probability.
— Fix h, sy and ap, one can view Py (sny 1S, an) as a vector Py, o, (Shy1)-

A reward ry(sp, ap) is a scalar in [0, 1].

Reward
Ih-1(Sh-1, An-1) Action ay,

Sht1 ~Pr(- ISn an)

State s,

Figure: An abstract illustration of time-dependent and finite-horizon MDP dynamics.

9/59



MDP Preliminaries

2 Preliminaries

Optimization goal:
e Apolicy 7 is a mapping from S x [H] to A, where [H] :={0,1,...,H— 1}.
e The policy space is defined as 1T := AS*H],

e Find a policy 7 that maximizes the expected cumulative reward (V-value function) over H time horizon for an
initial state s € S.

argmax V] (s Z (se,a)|m,sp = s]. (1)
well
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MDP Preliminaries

2 Preliminaries

Optimization goal:

10/59

A policy 7 is a mapping from S x [H| to A, where [H| :={0,1,...,H— 1}.

The policy space is defined as IT := AS*[H],

Find a policy 7 that maximizes the expected cumulative reward (V-value function) over H time horizon for an
initial state s € S.

argmax V] (s Z (se,a)|m,sp = s]. (1)
well —h

Define the optimal value of an initial state s € S at each time step h € [H] of the finite-horizon MDP M as
Vi (s) = maxyem VJ (s).
A policy 7 is an optimal policy 7* if V§ = V.
Similarly, Q-value function Qf : S x A — R is defined as
H-1
Qr(s,a) = E[Z re(se, ap)|m, sp = s, ap, = al, (2)

t=h

and Q; (s, a) := maxycr Qf (s, a).



MDP Preliminaries: Finding the Shortest Path in a Maze

2 Preliminaries

e States: Positions in the maze.

e Actions: Movements (up, down, left, right).

e Transition probabilities: It captures how reliable the robot’s movements are.

Reward function: r(sy, ap) = 0 if sp, is the exit; otherwise, r(sp, ap) = —1.

Total time horizon: The total number of time steps the robot is allowed to act before the game ends.
Optimization goal: Find a policy € II that minimizes the expected number of steps to reach the exit.

I Exit

%

Entry

Figure: Robot-in-Maze Example: Find the shortest path.
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Quantum Preliminaries

2 Preliminaries

Qubits (Quantum Bits)

e Aqubit |¢) is the basic unit of quantum information (vs. A A
classical bit 0 or 1). V2 +,/§ x

e Superposition property: 1)) = «|0) + 3 |1) = « {1] +5 [0}
0 1 Figure: A cat that is 50% likely dead and 50% likely

where «, 3 € C are amplitudes satisfying |a|? + |3]? = 1. alive.
e Measurement: observe |0) or |1) with |a|? or | 3|2 probability.
Unitary Operators
e Quantum computations are performed using unitary operators

U, where UTU = I.
e Example: Hadamard gate (H = \/15 E _11]);

HI0) =

{ﬂ 7(|0) +|1)). Figure: A geometrical representation of a qubit:

12/59 bloch sphere.



Quantum Preliminaries

2 Preliminaries

How to encode a real number in quantum computing?

e For any non-negative real number k, the fixed-point binary representation of k would be written as
Bilk] = k1297 P71+ kqp2° + kgps127  + -+ + kg2 P =kiky - - kg—p-Kg—p+1- - Kg,

where k; € {0,1} forall1 <i <gq.
— Example: When q = 7, p = 4, then Bi[5.75] = 101.1100.

e Then we encode the real number k with q qubits based on Bi[k] and write it as
Bilk]) = Ik1) [ka) -~ [kq) € C*".

For simplicity, we often omit the index q when writing the ket.
— Example: [Bi[5.75]) = |1) ® |0) ® |1) ® |1) ® |1) ® |0) ® |0) = [1)[0) |1) |1) |1) [0} |0).
e We assume that q and p are large enough for the problem we consider so that there is no overflow in storing
real number.
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Quantum Preliminaries

2 Preliminaries

How to encode a series of real numbers in quantum computing?

Definition (Quantum oracle for functions and vectors)

Let Q) be a finite set of size N and f € R® (equivalently f :  — R) where each entry of f is represented with a
precision of 27P. A quantum oracle encoding f is a unitary matrix By : CN @ C?" — CN @ C? such that

By : [i) ® |0) — [i) @ [Bi[f(i)]) (3)
for all i € [N], where Bi[f(i)] is the binary representation of f(i) with precision 277.

* By is often referred to as a binary oracle for the function/vector f.
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Background

3 Exact Dynamics Setting

Under this setting, it is assumed that the dynamics of the environment is fully known to the agent.

l Exit
Agent
Reward . E - t%‘.\
Perceived!.. ;
State sp, Thet(hov@ao1) e Action a; ao
rh(Sh, ap) Entry

| Sne1 ~Pr(- ISh, an) |

Figure: An illustration and an example of time-dependent and finite-horizon MDP dynamics in the exact dynamics setting.
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Background

3 Exact Dynamics Setting

Under this setting, it is assumed that the dynamics of the environment is fully known to the agent.

l Exit
Agent

Reward ; Iﬂ - B
Percelv?‘('i“!ﬁ., Action aj, I'E' tamnl

State sp, Th-1(Sh-1, Ap-1)

I (Sh, ah). M Entry

| Sne1 ~Pr(- ISh, an) |

Figure: An illustration and an example of time-dependent and finite-horizon MDP dynamics in the exact dynamics setting.

Definition (Classical oracle of time-dependent and finite-horizon MDP)

We define a classical oracle Oy : S X A x [H] x § — [0, 1] x [0, 1] for time-dependent and finite-horizon MDPs
Or : (s,a,h,8") = (ra(s,a), Ppysa(s’)). (4)
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Classical Algorithm for Finite-horizon MDPs
3 Exact Dynamics Setting

The Bellman optimality value operator 7" : RS — RS is defined as

[Th(Vh+1)]s = Igleaf)l({rh(s, a) + PE\S7th+1}~ (5)

Theorem: Bellman Optimality Equations [Bellman, 1957]

Suppose that Vg = 0. The V-value functions satisfy V, = V;: for all h € [H] if and only if:

Vi =T"(Viy1), Vhe [H]. (6)
Furthermore, the policy:
7(s,h) = argmax {rh(s, a) + Pﬁs’thH} (7)
acA

is an optimal policy.
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Classical Algorithm for Finite-horizon MDPs
3 Exact Dynamics Setting

Algorithm 1 Value Iteration (Backward Induction) Algorithm for Finite Horizon MDPs [Bellman, 1957]

1: Require: MDP M.

2: Initialize: Vg <+ 0

3 forh:=H-1,...,0do
4: foreachs € Sdo

5: foreacha € Ado
6: Qn(s,a) = rn(s,a) + > Phisa(s)Vhy1(s')
s'eS
7: end for
8: 7(s,h) = argmax Qy(s, a)
acA

©

Vi(s) = Qu(s, m(s, h))
10:  end for

11: end for

12: Return: m, Vy
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Classical Algorithm for Finite-horizon MDPs
3 Exact Dynamics Setting

Definition (Classical oracle of time-dependent and finite-horizon MDP)

We define a classical oracle Op : S x A x [H] x § — [0, 1] x [0, 1] for time-dependent and finite-horizon MDPs

OM : (s,a,h,s’) = (T‘h(S,a),PmS’a(S/)). (8)
e The classical value iteration algorithm requires

O(S%AH) (9)

queries to the oracle O 4.
— Taking maximum over the whole action space: O(A).
— Computing the inner product PE‘S,GV;,H: 0(S).
— Updating all the values in V: O(S).
— Updating H time horizons: O(H).
e Assuming that it takes O(1) time to query the oracle O once, the time complexity of the classical value
iteration algorithm is O(S2AH).
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Classical Algorithm for Finite-horizon MDPs
3 Exact Dynamics Setting

Definition (Classical oracle of time-dependent and finite-horizon MDP)

We define a classical oracle Op : S x A x [H] x § — [0, 1] x [0, 1] for time-dependent and finite-horizon MDPs

OM : (s,a,h,s’) = (T‘h(S,a),PmS’a(S/)). (8)
e The classical value iteration algorithm requires

O(S%AH) (9)

queries to the oracle O 4.
— Taking maximum over the whole action space: O(A).
— Computing the inner product PE‘S,GV;,H: 0(S).
— Updating all the values in V: O(S).
— Updating H time horizons: O(H).
e Assuming that it takes O(1) time to query the oracle O once, the time complexity of the classical value
iteration algorithm is O(S2AH).

Can we design a quantum algorithm to reduce the time complexity of solving finite-horizon MDP, i.e., computing
an optimal policy 7 and optimal V-value function V?
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Quantum Oracle
3 Exact Dynamics Setting

e Note that quantum computation are performed using unitary operators!

Definition (Classical oracle of time-dependent and finite-horizon MDP)
We define a classical oracle Op : S x A x [H] x § — [0, 1] x [0, 1] for time-dependent and finite-horizon MDPs

Or : (s,a,h,8") = (ra(s,a), Ppysa(s')). (10)

Definition (Quantum oracle of time-dependent and finite-horizon MDP)

Let M be a time-dependent and finite-horizon MDP. A quantum oracle of such an MDP is a unitary matrix
Oom CS@CAQCEQRCS®CY @CY - C5@CA®CH ® C*® C¥ ® C? such that

Og : Is) la) [h) |s') 0) [0) + |s) |a) [h) |s') [Bi[ra(s, @)]) |BilPhjsa(s')]) , (1)

forall (s,a,h,s') € S x A x [H] x S, where Bi[ry(s, @)] and Bi[Pps 4(s')] denote the fixed-point binary
representation of r, (s, a) and Ppys 4(s').
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Quantum Maximum Searching Algorithm
3 Exact Dynamics Setting

e Problem Formulation: For an unsorted vector f € R¥, one wants to find the index i such that f(i) = mfﬂ}(f(])
JEIN
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Quantum Maximum Searching Algorithm
3 Exact Dynamics Setting

Problem Formulation: For an unsorted vector f € R¥, one wants to find the index i such that f(i) = mfﬂ}(f(])
JEIN

Classical algorithm: ©(N) queries to the vector f.
Quantum maximum searching algorithm [Durr and Hoyer, 1999]: @(\/JTI) queries to a quantum oracle B!
— Suppose N = 1,000, 000: Quantum: = 42 days vs. Classical: ~ 114 years!

We use QMS;s{f(i) : i € [N]} to denote the process of finding the index of the maximum value of a vector f
with a success probability at least 1 — 4.
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Revisit the Classical Value Iteration Algorithm
3 Exact Dynamics Setting

Algorithm 2 Value Iteration (Backward Induction) Algorithm for Finite Horizon MDPs [Bellman, 1957]

1: Require: MDP M.

2: Initialize: Vg <+ 0

3 forh:=H-1,...,0do
4: foreachs € Sdo

5 for eacha € Ado
6: Qn(s,a) =ru(s,a) + > Ppjsa(s)Vhya(s')
s'eS
7: end for
8: 7(s,h) = argmax Qy(s, a) > Can we incorporate QMS in this step?
acA

©

Vi(s) = Qu(s, m(s, h))
10:  end for

11: end for

12: Return: m, Vy
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Quantum Value Iteration Algorithm QVI-1(M, 0)

3 Exact Dynamics Setting

Algorithm 3 Quantum Value Iteration Algorithm QVI-1(M, §)

: Require: MDP M, quantum oracle Og ¢, maximum failure probability § € (0, 1).
. Initialize: ¢ < &/(SH), Vi « 0.

:forh:=H-1,...,0do

create a quantum oracle B‘}h+1 for vector f/hﬂ e R®

H w0 N -

Vs € S: create a quantum oracle BOh ) encoding vector Oh,s € RA with Ogn and BVh+1 satisfying

Qns(a) < ra(s,a) + Ph Vi
Vs € S: (s, h) « QMSC{Oh,S(a) cae A} > We apply QMS now!
Vs € St Vi(s) + Qns(7 (s, h))
end for
: Return: 7, VO

o

¥ ® N &
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Theoretical Analysis on QVI-1(M, §)

Precise case

Theorem (Correctness of QVI-1)

The outputs 7 and f/o satisfy that 7 = 7* and Vo = V;; with a success probability at least 1 — 9.

e QVI-1 can obtain optimal policy and V-value function.

Theorem (Complexity of QVI-1)

The quantum query complexity of QVI-1in terms of the quantum oracle of MDPs Og r4 is
0($*\/AHlog(SH/3)).

e Classical value iteration algorithm: O(S?AH)
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Potential Problems in QVI-1

3 Exact Dynamics Setting

QVI-1is advantageous for problems with a large action space.
e Natural language processing (NLP): Each text in a large dictionary corresponds to a distinct action.

For the problems that have large state spaces, QVI-1 become infeasible, because of its complexity of 0(§?).
e Chess or Go: Each position in a vast board is represented as a state.
e Computing the inner product P}TlIS thH: 0(S).

e Updating all values in V,: O(S).

Tokenization

['Natural', 'Language’, 'Processing' ]

(a) NLP

Figure: Applications of QVI-1.

25/59



Improvement on QVI-1
3 Exact Dynamics Setting

Observation: for obtaining an “e-estimation of the mean” of n Boolean variables, quantum algorithms only need
O(min{e~!,n}) queries to a binary oracle [Nayak and Wu, 1999, Beals et al., 2001].

e A quantum speedup is possible when estimating inner product PE‘S th+1.
e We can only obtain a near-optimal policy.
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Improvement on QVI-1
3 Exact Dynamics Setting

Observation: for obtaining an “e-estimation of the mean” of n Boolean variables, quantum algorithms only need
O(min{e~!,n}) queries to a binary oracle [Nayak and Wu, 1999, Beals et al., 2001].

e A quantum speedup is possible when estimating inner product PE‘S th+1-
e We can only obtain a near-optimal policy.

Does there exist an error-bounded quantum algorithm that can obtain e-optimal policy 7 and e-optimal values
{Vh}f;ol for an MDP M but only requires

0 <Scpoly(\/z, H, l/e)> (12)

queries to the quantum oracle Ogq, where 0 < ¢ < 27

Definition (e-optimal value and policy)

e We define values {V}}; are e-optimal if ||V;; — V||__ < eforall h € [H].

e A policy 7 is e-optimal if HV;: — V;{Hoo <e
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Quantum Mean Estimation Algorithms
3 Exact Dynamics Setting

Can we use existing quantum mean estimation algorithms [Montanaro, 2015, Cornelissen et al., 2022]?
e They require a probability oracle U, that encodes the probability distribution in the amplitude.
e We only have a binary oracle Og( that encodes the probability distribution in the ket |-).

Definition (Quantum oracle for probability distribution)

Let 2 be a finite set of size N and p = (px)xeq a discrete probability distribution on 2. A quantum oracle encoding a
probability distribution p is a unitary matrix U, : CN @ € — CN @ CJ such that

Up: [0) @ 0) = > v/px %) ® [wy) (13)

x€Q

where 0 < J € Zis arbitrary and |wy) € C/ are arbitrary junk state.
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New Quantum Subroutine: Quantum Mean Estimation with Binary Oracle
3 Exact Dynamics Setting

Theorem (Quantum Mean Estimation with Binary Oracle)

Let 2 be a finite set with cardinality N, p = (px)xeq a discrete probability distribution over 2, and f : Q@ — Ra
function. Suppose we have access to

e a binary oracle B, encoding the probability distribution p,

* a binary oracle By encoding the function f.

If the function f satisfies f(x) € [0, 1] for all x € (2, then the algorithm QMEBO requires O((@ + \/g) log(1/4))
queries to B, and By to put an estimate /i of

n=E[f(x)lx ~ p] = p'f (14)
such that Pr(|fi — | <€) > 1 — 0 forany é > 0.

e We denote QMEBO; (p'f, B, By, €) as an estimation of E[f(x)|x ~ p], to error less than e with probability at
least 1 — ¢, using QMEBO.
. QMEBO(;(PE‘S thH, Oon; By, €) requires O(é) queries to Og 4.
T

— Computing precise value Ph|s B

I7h+1 requires O(S) queries to Og a.
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Revisit the Quantum Value Iteration Algorithm QVI-1( M, §)

3 Exact Dynamics Setting

Algorithm 4 Quantum Value Iteration Algorithm QVI-1(M, §)

: Require: MDP M, quantum oracle Og ¢, maximum failure probability § € (0, 1).
. Initialize: ¢ < &/(SH), Vi « 0.

:forh:=H-1,...,0do

create a quantum oracle B‘}h+1 for vector f/hﬂ e R®

H w0 N -

Vs € S: create a quantum oracle BOh . encoding vector Oh,s € R4 with Oop and BV;,+1 satisfying

o

O;Ls(a) — rup(s,a) + les th+1 > Can we incorporate QMEBO in this step?
Vs € S: (s, h) « QMSC{Oh’S(a) cae A}
Vs € S: Vi(s) < Qns(7(s,h))
end for
: Return: 7, Vj

¥ ® N &
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Quantum Value Iteration Algorithm QVI-2( M, ¢, §)

3 Exact Dynamics Setting

Algorithm 5 Quantum Value Iteration Algorithm QVI-2(M, €, §)

1: Require: MDP M, quantum oracle Og ¢, maximum error ¢ € (0, H], failure probability 6 € (0, 1).
2: Initialize: ¢ < 0/ (4¢SA*Hlog(1/6)), Vg « 0.
3 forh:=H—-1,...,0do
4:  create a quantum oracle BVh+1 encoding Vi, 1 € [0, 1] defined by Vi1 < VhH/H
5: Vs € S: create a quantum oracle By, , encoding zj, 5 € R4 defined by
Zns(a) «+ H- QMEBOC(PglsﬂVhH, Oom, By, | 5i) — 71
6: Vs € S: create quantum oracle BOh,s encoding Oh,S € RA with Oonm and By, satisfying

Oh,s(a) A max{rh(s, a) + zh,s(a)’ O}
7. Vs € S:7(s,h) < QMS;{Qns(a) : a € A}
8: Vs € S: Vh(s) — Oh,s (7AT(S, h))
9: end for
10: Return: 7, {Vh}fz_ol

* 7,4(a) can be regarded as an g-approximation of P,Tl‘sythH.
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High-level Idea of QVI-2( M, ¢, 0)

3 Exact Dynamics Setting

Note that the classical value iteration algorithm and QVI-1 follows the same idea:
e |nitialize Vg = 0.
e Repeatedly apply the Bellman recursion Vi, = 7"(V;,.1) for all h € [H], where

[Th(Viy1)s = max{ra(s, ) + PliaVni1}, Vs € S. (15)

Idea of QVI-2:

e The Monotonicity Technique: Instead of computing the precise value of P}ﬂs «Vh+1, QMEBO computes an
estimate zj, ¢(a) with one-sided error satisfying

€
P;I;\s,th—i-l - ﬁ < Zh,s(a) < PasvthH. (16)

e Control the error in each step to be ; so that the total error after H steps remains e.
The quantum speedup of QVI-2:

e QMEBO: O(1/S) vs. precise value: O(S).

e QMS: O(v/A) vs. Classical: O(A).
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Theoretical Analysis on QVI-2
3 Exact Dynamics Setting

Theorem (Correctness of QVI-2(M, ¢, 0))

The outputs 7 and {Vj, }=g satisfy that
Vi—e<V, <V <V (17)

for all h € [H] with a success probability at least 1 — 0.
e The inequality Vh < V;;r comes from the one-sided error, i.e. the monotonicity technique.
Theorem (Complexity of QVI-2( M, ¢, §))

The quantum query complexity of QVI-2(M, €, 0) in terms of the quantum oracle of MDPs Og 4 is

0(81'5\/KH3 log (SA™H/9)

€

). (18)

e QVI-2(M, ¢, §) successfully achieves our optimization goal!

e QVI-2 achieves significantly higher computational efficiency than the classical value iteration algorithm,
particularly in problems characterized by a large state and action space but a short time horizon H.
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Classical Lower Bound
3 Exact Dynamics Setting

Theorem (Classical Lower Bound in the Exact Dynamics Setting)

Let S and A be finite sets of states and actions. Let H > 2 be a positive integer and € € (0, %) be an error
parameter. We consider the following time-dependent and finite-horizon MDP M = (S, A, { Py, f:_ol, {rp }f:_ol, ),
where ry, € [0, 1]5*A for all h € [H].
e Given access to a classical oracle O, any algorithm IC, which takes M as an input and outputs
e-approximations of {V}T }f:_ol or * with probability at least 0.9, must call the classical oracle O 4 at least

Q(8%4) (19)
times on the worst case of input M.

e Provided H and ¢ are constants, the quantum query complexities of QVI-1 and QVI-2 are O(SQ\/Z) and
0(8'°\/A), respectively.

e Quantum algorithms can solve finite-horizon MDPs with query complexity in terms of S and A that liesin a
regime provably inaccessible to any classical algorithm!
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Summary
3 Exact Dynamics Setting

Query Complexity

Goal: Classical

Quantum Upper Bound
Upper bound | Lower bound

optimal 7%, V S?AH S?2A $2\/AH [QVI]

e-accurate estimate

9 9 S15\ /A3 )
of 7 and {Vi }} -, Al A vl

Table: Classical and quantum query complexities for different algorithms solving time-dependent and finite-horizon MDPs in
the exact dynamics setting. All quantum upper bounds are 6() assuming a constant failure probability ¢. The range of error
term e is (0, H]. The classical upper bounds are O(-), derived from the value iteration algorithm in Section 4.5 in

[Bellman, 19571].
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Background

4 Generative Model Setting

e The prior exact dynamics model is not always readily available in a complex environment.
e In this setting, it is assumed that the dynamics of the environment are unknown to the agent.

I Exit
Agent
Reward Unperceived].~ : E - Y‘%‘.\
State sy, The1(She1, @n—1) Q _____________________ Actiona, | = T an
rh(sp, ap) Entry

| Sht1 ~Pn(- ISh, an) |

Figure: An illustration and an example of time-dependent and finite-horizon MDP dynamics in the generative model setting.
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Background

4 Generative Model Setting

e The prior exact dynamics model is not always readily available in a complex environment.
e In this setting, it is assumed that the dynamics of the environment are unknown to the agent.

I Exit

Agent

Reward .
Unperceived!. .
State sp, The1(She1, @n—1) sp _____________________ Action ay

rh(sp, ap)

| Sht1 ~Pn(- ISh, an) |

Figure: An illustration and an example of time-dependent and finite-horizon MDP dynamics in the generative model setting.

. iid. .
(s,a,h) Generative Model sh(s,@) ~ Phjsai = 1,..,N

Figure: The agent can query a generative model to sample transitions for specific state-action pairs in each time horizon
h € [H].
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Classical and Quantum Generative Oracle
Generative Model Setting

e A classical generative oracle for the finite-horizon MDP is able to generate N independent samples for each
triple (s,a,h) € S x A x [H] as follows

st (s,a) LR Pn(-|s,a), i=1,...,N. (20)
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Classical and Quantum Generative Oracle
Generative Model Setting

e A classical generative oracle for the finite-horizon MDP is able to generate N independent samples for each
triple (s,a,h) € S x A x [H] as follows

st (s,a) LR Pn(-|s,a), i=1,...,N. (20)

e A quantum generative oracle for the finite-horizon MDP is defined as follows.

Definition (Quantum generative oracle of an MDP)

The quantum generative oracle of a time-dependent and finite-horizon MDP M is a unitary matrix
G:CSCACEleCSeC - CS®CA®CH®CS® C satisfying

G:ls)®la) @ |h) ®10) ®0) = |s) ® |a) ® ) (D _ 1/Prisa(s) |s") ® W), (21)

where 0 < J € Zis arbitrary and |wy) € CJ are arbitrary.

e Optimization goal: Given the generated data samples, we want to obtain e-optimal policy 7, V-value functions
{Vh 1=} and Q-value functions {Qpn}7— .
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Quantum Mean Estimation
Generative Model Setting

Theorem (Quantum mean estimation [Montanaro, 2015])

There are two quantum algorithms, denoted as QME1 and QME2, with the following properties. Let ) be a finite
set, p = (px)xeq a discrete probability distribution over 2, and f : 2 — R a function. Assume access to

e a probability oracle U, for the probability distribution p;
e a binary oracle By for the function f.
Then,
1. For a function f satisfying 0 < f(x) < u for all x € 2, QME1 requires O(% 4 \/g) invocations of Uy, and By,
2. For a function f satisfying Var|f(x) | x ~ p] < o, QME2 needs 0(Z log?(2)) invocations of U, and By,

to output an estimate fi of 1 = E[f(x) | x ~ p| = p™f satisfying Pr(|ji — u1| > €) < 1/3. Furthermore, by repeating
either QME1 or QME2 a total of O(log(1/0)) times and taking the median of the outputs, one can obtain another
estimate [i of pu such that Pr(|i — p| <€) > 1 — 6.

We denote QME{i}s(pTv, €) as an estimate of the mean f(x), with x distributed as p, to error less than e with
probability at least 1 — ¢, using QME{i} fori € {1,2}.
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Quantum Mean Estimation QME1

Generative Model Setting

For a random variable X € [0, u], one wants to obtain an e-estimation of E[X], where € € (0, u].
e Hoeffding's inequality implies that O(uz/ez) classical samples are required.
e QME1 only requires O(u/¢) quantum samples.

e QME1is a quantum version of Hoeffding’s inequality.

Lemma: Hoeffding’s inequality

Let X1,Xy, ..., X, be independent and identically distributed random variables such that 0 < X; < u and true mean
E[Xj] = pforalli. Let X, = %(Xl + Xg + - - - + Xp) be the sample mean. Then the Hoeffding’s inequality states:

. 2ne?
P(|Xn — p| > €) < 2exp <— - ) : (22)
u
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Quantum Mean Estimation QME2

Generative Model Setting

For a random variable X with finite non-zero variance o2

e € (0,0].

, one wants to obtain an e-estimation of E[X], where

e Chebyshev’s inequality implies that (o2 /€?) classical samples are required.
e QME2 only requires O(a/e) quantum samples.
e QME2 is a quantum version of Chebyshev'’s inequality.

Lemma: Chebyshev’s inequality

Let X3,Xa, . .., X, be independent and identically distributed random variables such that true mean E[X;] = 1 and
true variance Var[X;] = o for all i. Let X, = %(Xl + Xy + - - + X;,) be the sample mean. Then the Chebyshev’s
inequality states:

Var[X,] o2

P(Xn—pl > €) < —= = —. (23)
€ €

=
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Quantum Value Iteration Algorithm QVI-3( M, ¢, §)

4 Generative Model Setting

Algorithm 6 Quantum Value Iteration Algorithm QVI-3(M, ¢, 9)

: Require: MDP M, generative model G, maximum error e € (0, H|, maximum failure probability 6 € (0, 1).
: Initialize: ¢ < 6/(4¢SA**Hlog(1/5)), Vg + 0.

:forh:=H-—1,...,0do

create a quantum oracle B‘A,h+1 encoding Vh+1 € RS

w1 A WO N -

Vs € S : create a quantum oracle Bz, encoding z ¢ € R4 with G and BV;.+1 satisfying
Zn,5(a)  QMEAC (PR, ,Vir1), 55) — 77 > We replace QMEBO with QMEx.

6:  create a quantum oracle B,, encodingr,, € RS*A
7. Vs € S : create a quantum oracle BOh . encoding Qp s € R4 with B, and By, , satisfying

Qh,s(a) < max{rp(s,a) + Zh,s(a)’ 0}
8 Vse€S:7(s,h) < QMS;{Qns(a) :a € A}
9: Vs €8 :Vy(s) < Ons(7(s,h))
10: end for
11: Return: 7, {Vh}fz_ol
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High-level Idea of QVI-3( M, ¢, 0)

4 Generative Model Setting

QVI-3 shares a similar idea as QVI-2:
e |nitialize Vg = 0.
e Repeatedly apply the Bellman recursion V;, = 7" (V},, 1) for all h € [H], where

[Th(Vis1))s = max{ry(s, a) + PhisaVai1}, Vs € S. (24)

T

e The Monotonicity Technique: Instead of computing the precise value of Ph‘s

estimate zj, ;(a) with one-sided eror satisfying

th+1’ QME1 computes an

€
Pil;\s,th+l - ﬁ < Zh,s(a) < P;Tl|sjth+1. (25)

e Control the error in each step to be ; so that the total error after H steps remains e.
o Apply QMS to find the action 7 (s, h) = argmax,¢ 4{rn(s,a) + Py ,Vhi1}.
The quantum speedup of QVI-3:

e QME1®: O(, /%) = O(HTZ) vs. Hoeffding’s inequality: O(%) = O(f—;)
e QMS: O(v/A) vs. Classical: O(A).
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Theoretical Analysis on QVI-3(M, ¢, §)

4 Generative Model Setting

Theorem (Correctness of QVI-3(M, ¢, 0))
The outputs 7 and {Vy, }1_ satisfy that
Vi—e<Vy <V <V (26)
for all h € [H] with a success probability at least 1 — 6.
e The inequality Vh < V,’f comes from the one-sided error technique, i.e. the monotonicity technique.
Theorem (Complexity of QVI-3(M, ¢, §))
The quantum query complexity of QVI-3(M, ¢, d) in terms of the quantum generative oracle of MDPs G is
SV/AH®log (SA'H/)

€

e A classical algorithm [Sidford et al., 2023] requires a(s/g{?’) queries to the classical generative model G.

4
)

o( )- (27)

e The state-of-the-art (SOTA) classical algorithm [Li et al., 2020] requires ()(

generative model G.
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Improvement on QVI-3
4 Generative Model Setting

Note that QVI-3 only outputs e-optimal policy and V-value functions.
e Can we obtain e-optimal Q-value functions with QVI-3?
e Yes, but b(@) — 5(@), because Q-value functions Q;, € RS*4 h € [H].

e Our quantum lower bounds also confirms that the O(A) dependence of the quantum sample complexity is
unavoidable.

QVI-4: (a) outputs the e-optimal policy, V-value functions, and Q-value functions; (b) achieves a better dependence
on H than QVI-3 by adapting the following classical techniques [Sidford et al., 2018] in a quantum setting.

e The monotonicity technique
e The variance reduction technique

e The total-variance technique
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Variance Reduction
Generative Model Setting

e Main Idea: Enhance efficiency over standard value iteration
e Goal: Achieve target error e with K = O(log(H/¢)) epochs
e Strategy:
— Decrease error: e, = ex_1/2, ending at ex = e.
— Outputs per epoch k: e-optimal Vi 5, Qk,n, and policy 7.
— Only increase a log term in query complexity.
Rewrite the Bellman recursion:

— Standard Bellman recursion: (1) Initialize Vi = 0; (2) Repeatedly apply the Bellman recursion Vi, = T"(Vyy1),
where 7" : RS — RS is defined as

(7" (Vig1)]s = max{ru(s, @) + Pyjs o Vns1}, (28)

foralls € S.
— Rewriting: (1) Repeat the standard Bellman recursion for K times: Vi, — Vj ; (2) Rewrite the Bellman recursion:

0 0
P;\s,aVKh-‘rl - les,a(vk,h-‘rl - VlE.,h)Jrl) + P;\s,avlg,h)+17 (29)
where V(%

kh+1 18 the initial V-value from epoch k — 1.
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Variance Reduction
Generative Model Setting

Estimation approach: Individually estimate the two
terms of the RHS of Eq. (29) with an error ¢ /(2H).

T 0) .
Ph\s,a(Vk,thl - Vk,h+1)-
— Condition: 0 < Vi 41 — V,EOh)Jrl < Cey

— Classical: O(H?) samples — Quantum: O(H) samples

T (0 .
° PM&ath+1'

— Condition: 0 < V,E?,?H <H

— Classical: O(H*/e2) — Quantum: O(H? /)
e Overall complexity:

— Classical: O(SAH® /€?)

— Quantum: O(SAH? /e;)
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Variance Reduction
Generative Model Setting

Estimation approach: Individually estimate the two
terms of the RHS of Eq. (29) with an error ¢ /(2H).

0) .
P;l;\s,a(vk:thl - Vk,h-{—l)'

— Condition: 0 < Vi 41 — V,EOh)Jrl < Cey
— Classical: O(H?) samples — Quantum: O(H) samples

T 0) .
° Ph\s7aVk,h+1'
— Condition: 0 < V(O) <H

kil S
— Classical: O(H*/e2) — Quantum: O(H? /)

e Overall complexity:
— Classical: O(SAH® /€?)
— Quantum: O(SAH? /e;)
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Key advantage: Quantum subroutine QME1 reduces
complexity (H> — H3 and 1/e2 — 1/e).

Limitation: No A to v/A speedup (estimates all
Q-values)

Comparison: No additional H speedup vs. QVI-3

Future benefit: Combines with total variance
technique for greater gains



Total Variance Technique
Generative Model Setting

e Core insight: The propagation of errors across the H steps is smaller than assumed!

Previous error: € /(2H) per step for u,s(’h P}T1|S aV,EOh)H — accumulated error over H steps is €y /2.

New error: Relax to exoy, /(2H'°), where oy} = [0 (V,EO}?H)](S, a)

— Maxerror: Ek/ Q\F)
— Since €k0'k w/(2H') > € /(2H), the sample complexity can be reduced.

Total error over H steps: Still bounded by €, /2 (via Lemma on total variance upper bound: Zh 0 k h < H'®)

Classical sample complexity [Sidford et al., 2018]:
— Chebyshev’s inequality: O(SA(0} )% (€0} /H'®) ~2) = O(SAH? /€?) samples per time step and O(SAH* /€?) overall.
— Classical sample complexity without total variance technique: @(SAH5/62).

Quantum sample complexity:
— QME2: O(SAH"®/¢) samples per time step and O(SAH?® /) overall.
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Quantum Value Iteration Algorithm QVI-4( M, ¢, §)

Generative Model Setting

Algorithm 7 Quantum Value Iteration Algorithm QVI-4(M, ¢, §)

1: Require: MDP M, generative model G, maximum error ¢ € (0, \/H], maximum failure probability § € (0, 1).
2: Initialize: K « [log,(H/e)] + 1, ¢ + 6/4KHSA, ¢ = 0.001,b = 1
3: Initialize: Vh € [H] : V((f)}z «—0;VseS,he[H: w(()o) (s,h) < arbitrary action a € A.
4: fork=0,...,K—1do
50 e H/2" Vi ¢ 0,V 0
2
6 V(s,a,h) €S x Ax [H : yn(s, a)  max{QME1 (PL_ (Vi) )%, b) — (QME1 (P}, Vi), . b/H))", 0}
7: V(s,a,h) €S x Ax [H]: xp(s,a) + QME2, (PElsaVIE h)+1,cH—1~5e Yin(s, a) + 4b) — cH Se\/yin(s,a) + 4b

forh:=H—-1,...,0do
(s, a) €S x A gin(s,a) < QME1, (P h|sa(Vk hal — V,th)ﬂ) cH ') — cH e
10 V(s,a) € S x A: Qun(s,a) < max{ry(s,a) + xx n(s,a) + gxn(s,a),0}
11: Vse S Vk h( ) < Vk h(S) [ (Qk h)]s,m(s h) < TI'k(S h) [ (Qk h)]
12: Vs € S 1if Vign(s) < V% (), then View(s) < VAo (s) and (s, h) < 7 (s, h)

13:  end for

14: Yhe [H: VIEO+)1.h < Vip and W;E(J)r)l(w h) < mc (-, h)

15: end for

16: Return: 7 := mx_1, {Vh}f;ol = {Vk_ 1} {Qh = {Qx-1h}h—0
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Analysis of QVI-4( M., ¢, §)

Generative Model Setting

Theorem (Correctness of QVI-4( M., ¢, §))

The outputs 7, { Vi }i_, and {Qn}L_, satisfy that
Vi—e<V,<VI <V (30)
Q-e<U<Q <G (31)
for all h € [H] with a success probability at least 1 — 6.
Theorem (Complexity of QVI-4( M, ¢, §))

The quantum query complexity of QVI-4(M, ¢, §) in terms of the quantum generative oracle of MDPs G is

0 <SA(25 + H?) log? (Hi 5)1og <log< )HSA/(S)) (32)

€

SAII

e The best classical algorithm [Li et al., 2020] requires O( ) queries to a classical generative model G.
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Lower Bounds for time-dependent and finite-horizon MDP
Generative Model Setting

Theorem (Classical lower bound for finite-horizon MDPs)

Let S and A be finite sets of states and actions. Let H > 0 be a positive integer and e € (0,1/2) be an error
parameter. We consider the following time-dependent and finite-horizon MDP M = (S, A, { Py} he0> {rh}f 01, H),
where ry, € [0, 1]5*A for all h € [H].
e Given access to a classical generah’ve oracle G, any algorithm IC, which takes M as an input and outputs
e-approximations of {Qh {Vh or 7* with probability at least 0.9, must call the classical generative

oracle G at least
SAH®

o (1) (33)

times on the worst case of input M.
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Lower Bounds for time-dependent and finite-horizon MDP
Generative Model Setting

Theorem (Quantum lower bound for finite-horizon MDPs)

Let S and A be finite sets of states and actions. Let H > 0 be a positive integer and e € (0, 1/2) be an error
parameter. We consider the following time-dependent and finite-horizon MDP M = (S, A, {Pn}1—o, {rn}i—0, H),
where ry, € [0, 154 for all h € [H).
e Given access to a quantum generative oracle G, any algorithm KC, which takes M as an input and outputs
e-approximations of {Q;‘;}f;ol with probability at least 0.9, must call the quantum generative oracle at least

SAH!-®

Aog () .

Q

times on the worst case of input M. Besides, any algorithm C, which takes M as an input and outputs
e-approximations of {V; H=1 or * with probability at least 0.9, must call the quantum generative oracle G at

h=0
least
Sv/AH'S

AogS( ) -

Q

times on the worst case of input M.
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Summary
Generative Model Setting

Goal:
obtain an Classical sample complexity Quantum sample complexity
e-accurate
estimate of Upper bound Lower bound Upper bound Lower bound
{opi} S [Lj et al., 2020] | SAE [Theorem 21] | SAE™ [QuI-4] | SAE™ [Theorem 21]

it | same : M lQueal
™ { V5 h—0 % [Li et al., 2020] % [Theorem 21] S‘/Z% [Theorem 21]

SYAIL [QuI-3]

Table: Classical and quantum sample complexities for solving time-dependent and finite-horizon MDPs in the generative model
setting. The classical lower bound for 7* and { V' ;1:—01 was shown in [Sidford et al., 2018].

e QVI-3 and QVI-4 are nearly (asymptotically) optimal (up to log terms) in computing near-optimal V/Q value
functions and policies, provided the time horizon H is a constant.

e Our quantum lower bounds rule out the possibility of exponential quantum speedups.
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Conclusion and Future Work

5 Conclusion
Query Complexity
Goal: Classical Quantum
upper bound | lower bound upper bound lower bound
optimal 7%, V S?AH S?2A $2\/AH [QVI-1] ?
e-accurate estimate of 7* and {V;’ f;ol S2AH S2A % [QVi-2] ?

Table: Classical and quantum query complexities for different algorithms solving time-dependent and finite-horizon MDPs in
the exact dynamics setting. All quantum upper bounds are O(-) assuming a constant failure probability §. The range of error
term € is (0, H]. The classical upper bounds are O(-), derived from the classical value iteration algorithm in [Bellman, 1957].

e What are the quantum lower bounds in the exact dynamics setting?

e What are the potential applications of the new quantum subroutines, QMEBO, and the quantum value
iteration algorithms, QVI-1 and QVI-2?
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5 Conclusion
Goal: . . .
obtain an Classical sample complexity Quantum sample complexity
e-accurate
estimate of Upper bound Lower bound Upper bound Lower bound
{05 {1{:—01 Silfl [Li et al., 2020] S‘g{s [Theorem 21] 78‘“:2‘5 [QVI-4] LT'S [Theorem 21]

o1 | s ; WE Q|
™ {Vito | 224 [Lietal., 2020] | S4C [Theorem 21] S\/Z% [Theorem 21]

SYAIL [QuI-3]

Table: Classical and quantum sample complexities for solving time-dependent and finite-horizon MDPs in the generative model

setting. The classical lower bound for 7* and { V! {11:—01 was shown in [Sidford et al., 2018].

e Can we design optimal quantum algorithms whose quantum sample complexities are the same as the
quantum lower bounds?

e What are the potential applications of QVI-3 and QVI-4?
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Quantum Algorithms for Finite-horizon Markov
Decision Processes

Thank you for listening!
Any questions?
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