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Introduction

Recent generative models have made it possible to synthesize highly realistic images

• Potentially providing an abundant data source for training machine learning models

• Generated images could generally capture high-level semantics in real images
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Motivation

However, they may still exhibit subtle artifacts or variations that could contribute to the modality gap

• Over-reliance on synthetic data could be harmful when models are applied to real-world task

• Questions: Do they really have the same modality?

• Previously, we indiscriminately use generated images as real images for training

?
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Motivation

Idea: We assume that they have different modalities

• We treat generated images as a separate modality from real images

• We bridge the two distinct modalities in the same latent space through a multi-modal learning approach

• E.g., Contrastive Language-Image Pretraining (CLIP)

Real Images Generated Images by Stable Diffusion



GMAIL: Generative Modality Alignment for generated Image Learning 

• We aim to train Vision-Language models on generated images made by diffusion models
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Experiments

Performances on various vision-language models and tasks

• We generate images using Stable Diffusion v2

• Image captioning

• VQA on ScienceQA and MMMU

ScienceQA MMMU



Experiments

Comparisons with CLIP-based approaches and tasks

• Zero-shot image retrieval on Flickr30k

• This demonstrates that GMAIL consistently enhances model performance across different backbone architectures by facilitating 
better alignment of generated images with real-world data

• Scaling trend of GMAIL on Flickr30k zero-shot image retrieval

• The results reveal a clear scaling trend, where increasing the volume of training data from COCO to CC3M and then to CC12M 
consistently enhances the model’s performance on both image-to-text and text-to-image retrieval tasks



Experiments

• Effects of Gen-Real Alignment

• These improvements highlight the critical role of alignment fine-tuning in bridging the modality gap between generated and real 
images, which enables the model to better capture and replicate the semantic richness found in real-world data

• Image generation with FLUX

• We have conducted experiments using FLUX, which introduces a more powerful and differently parameterized generation 
pipeline compared to Stable Diffusion v2. The performance improvements remain consistent with FLUX, indicating robust 
alignment across varying artifact styles and photorealism levels.
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