

Shentong Mo, Sukmin Yun (presenter)

Introduction

Recent generative models have made it possible to synthesize highly realistic images

- Potentially providing an abundant data source for training machine learning models
- Generated images could generally capture high-level semantics in real images

Generated Images by Stable DiffusionSame caption used

Motivation

However, they may still exhibit subtle artifacts or variations that could contribute to the modality gap

- Over-reliance on synthetic data could be harmful when models are applied to real-world task
- Questions: Do they really have the same modality?
 - Previously, we indiscriminately use generated images as real images for training

Generated Images by Stable Diffusion

Motivation

Idea: We assume that they have different modalities

- We treat generated images as a separate modality from real images
- We bridge the two distinct modalities in the same latent space through a multi-modal learning approach
 - E.g., Contrastive Language-Image Pretraining (CLIP)

Generated Images by Stable Diffusion

• We aim to train Vision-Language models on generated images made by diffusion models

Real Image

"A plate of fruit is on the table."

Generated Image

Experiments

Performances on various vision-language models and tasks

We generate images using Stable Diffusion v2

Image captioning

Method	B@4 (↑)	METEOR(↑)	CIDEr (↑)	SPICE (†)	ROUGE-L (↑)	WMD (↑)
ClipCap (Mokady et al., 2021)	32.15	27.10	108.35	20.12	_	_
ClipCap + GMAIL (ours)	38.12	31.67	119.53	23.75	56.27	62.16
IFCap (Lee et al., 2024)	33.25	28.60	115.27	21.58	51.35	56.72
IFCap + GAMIL (ours)	39.32	32.07	127.86	23.98	59.83	63.51
LLaVA (Liu et al., 2023)	39.67	32.38	134.29	24.17	61.36	65.78
LLaVA + GMAIL (ours)	43.26	34.89	146.38	27.23	65.25	71.39
Llama3 (Meta, 2024)	47.36	35.21	158.13	28.35	68.32	75.13
Llama3 + GMAIL (ours)	50.21	38.59	168.53	32.58	73.29	80.25

VQA on ScienceQA and MMMU

Method	Accuracy (%)
LLaVA	85.2
LLaVA + GMAIL (ours)	87.6
LLaMA-3	88.5
LLaMA-3 + GMAIL (ours)	91.2

Method	Accuracy (%)
LLaVA	44.7
LLaVA + GMAIL (ours)	48.3

ScienceQA MMMU

Experiments

Comparisons with CLIP-based approaches and tasks

Zero-shot image retrieval on Flickr30k

Method]	Image-to-Te	ext	Text-to-Image		
Method	R@1 (↑)	R@5 (↑)	R@10 (†)	R@1 (↑)	R@5 (†)	R@10 (†)
CLIP (Radford et al., 2021)	44.1	68.2	77.0	24.7	45.1	54.6
CLIP + GMAIL (ours)	47.1	71.2	79.6	30.2	50.3	60.5
Long-CLIP (Zhang et al., 2024)	47.2	71.5	80.0	33.1	55.6	64.9
Long-CLIP + GMAIL (ours)	51.6	75.3	83.6	39.3	61.5	71.8

• This demonstrates that GMAIL consistently enhances model performance across different backbone architectures by facilitating better alignment of generated images with real-world data

Scaling trend of GMAIL on Flickr30k zero-shot image retrieval

Train Data	Image-to-Text			Text-to-Image		
Haili Data	R@1 (↑)	R@5 (†)	R@10 (†)	R@1 (↑)	R@5 (†)	R@10 (†)
COCO	47.1	71.2	79.6	30.2	50.3	60.5
CC3M	48.6	73.6	82.2	32.6	52.6	62.3
CC12M	50.9	75.3	84.6	34.9	54.7	64.8

• The results reveal a clear scaling trend, where increasing the volume of training data from COCO to CC3M and then to CC12M consistently enhances the model's performance on both image-to-text and text-to-image retrieval tasks

Experiments

Effects of Gen-Real Alignment

Alignment	B@4 (↑)	METEOR(↑)	CIDEr (↑)	SPICE (†)	ROUGE-L (†)	WMD (†)
×	36.15	30.32	115.35	22.95	55.12	61.08
✓	38.12	31.67	119.53	23.75	56.27	62.16

• These improvements highlight the critical role of alignment fine-tuning in bridging the modality gap between generated and real images, which enables the model to better capture and replicate the semantic richness found in real-world data

Image generation with FLUX

Method	B@4 (†)	CIDEr (†)	SPICE (†)
FLUX (without alignment)	37.20	117.82	23.40
FLUX + GMAIL (ours)	39.54	122.36	24.15

• We have conducted experiments using FLUX, which introduces a more powerful and differently parameterized generation pipeline compared to Stable Diffusion v2. The performance improvements remain consistent with FLUX, indicating robust alignment across varying artifact styles and photorealism levels.

Thank You for Your Attention

