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Motivation

» Offline RL struggles with distributional shifts and suboptimal behaviors due to
the lack of environmental interaction.
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Motivation

» Offline RL struggles with distributional shifts and suboptimal behaviors due to
the lack of environmental interaction.

» Humans first grasp abstract understanding from videos before hands-on practice,
iInspiring us to explore if agents learn similarly for control.
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Motivation

» Offline RL struggles with distributional shifts and suboptimal behaviors due to
the lack of environmental interaction.

» Humans first grasp abstract understanding from videos before hands-on practice,
iInspiring us to explore if agents learn similarly for control.

» Unlabeled videos cost far less
than real-world interaction data.
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Motivation

» Offline RL struggles with distributional shifts and suboptimal behaviors due to
the lack of environmental interaction.

» Humans first grasp abstract understanding from videos before hands-on practice,
iInspiring us to explore if agents learn similarly for control.

» Unlabeled videos cost far less
than real-world interaction data.
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» Existing RL pretraining methods
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VeoRL: Video-Enhanced Offline RL

Diverse unlabeled videos Latent codebook
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Leverage diverse unlabeled videos to improve offline RL performance



Latent Behavior Abstraction

 Behavior abstraction network
(BAN) based on vector

Mck}le quantization is designed to obtain
Ty L e a discretized latent action space.
) _»é)_, f . - 2 » For two consecutive observations,
| a BAN selects the nearest codebook
vector as the latent behavior.
-—-»-f?MMD««-—|_> i ﬂ * Apply MMD loss to align visual

embeddings, enabling BAN use on
out-of-domain (OOD) videos.




Two-Stream World Model

Trunk Net: Plan Net:
hi = GRU(s;_1,a¢_1;6) ht = GRU(S;—1,a¢—1;0)
zt ~ p(he; 0) Ze ~ p(he; 0)
21 ~ q(he, e 0) zZi ~ q(he, e 0)
Ot ~ p(st;0) ot ~ p(5t;0)
e ~ p(st; 0) a: = Fyc(5:;0)
* Hierarchical world model * Plan Net that learns to predict

future trajectories based on high-
level behavior abstractions.

* Trunk Net that captures future state
transitions driven by real actions
and the associated environmental * Behavior cloning module that
rewards on target dataset. predicts latent behaviors based

solely on the state.



Model-Based Policy Learning

* Policy network and value network are
optimized over two-stream imagined
trajectories generated by both the trunk
net and the plan net.
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Model-Based Policy Learning

* Policy network and value network are
optimized over two-stream imagined
trajectories generated by both the trunk
net and the plan net.

* They are additionally conditioned on the
estimated latent behavior to incorporate
high-level control guidance.
ar = Fpc(st)

Policy network: 7T¢(a1; | St,C_Lt)

Value network: Uy, (St, at)
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Model-Based Policy Learning

* Policy network and value network are
optimized over two-stream imagined
trajectories generated by both the trunk
net and the plan net.

* They are additionally conditioned on the
estimated latent behavior to incorporate
high-level control guidance.

* A goal-conditioned Intrinsic reward is
proposed to align the target policy with
the behavior abstractions.

T = — || s¢, gtHQ
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Experiments

Three visual RL environments:

* Meta-World robotic manipulation

 CARLA autonomous driving

* MineDojo open-world games




Meta-World robotic manipulation
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CARLA autonomous driving
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MineDojo open-world games
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Ablation studies

Meta-World CARLA MineDojo
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Methods DreamerV?2 DreamerV?3 VeoRL(DV?2) VeoRL(DV?3)
Success Rate
Drawer Open 0.18 4 0.04 0.00 == 0.00 0.70 £ 0.07 0.55 = 0.15
Handle Press 0.33 £0.11 0.05 £ 0.05 0.60 = 0.12 0.35 £ 0.15
Episode Return
Drawer Open 1168.35 4= 59.55 674.55 4+ 79.04 1953.60 + 121.48 1393.50 £ 122.50

Handle Press 1201.75 = 422.10 257.85 &= 247.05 2650.90 4= 619.60 1360.15 4= 547.85




Thanks for your watching!
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