

Video-Enhanced Offline Reinforcement Learning: A Model-Based Approach

Minting Pan Yitao Zheng Jiajian Li Yunbo Wang Xiaokang Yang

Correspondence to: Yunbo Wang (yunbow@sjtu.edu.cn)

➤ Offline RL struggles with distributional shifts and suboptimal behaviors due to the lack of environmental interaction.

Train

Offline dataset

Offline agent

- ➤ Offline RL struggles with distributional shifts and suboptimal behaviors due to the lack of environmental interaction.
- Humans first grasp abstract understanding from videos before hands-on practice, inspiring us to explore if agents learn similarly for control.

- ➤ Offline RL struggles with distributional shifts and suboptimal behaviors due to the lack of environmental interaction.
- Humans first grasp abstract understanding from videos before hands-on practice, inspiring us to explore if agents learn similarly for control.
- Unlabeled videos cost far less than real-world interaction data.

- ➤ Offline RL struggles with distributional shifts and suboptimal behaviors due to the lack of environmental interaction.
- Humans first grasp abstract understanding from videos before hands-on practice, inspiring us to explore if agents learn similarly for control.
- Unlabeled videos cost far less than real-world interaction data.
- Existing RL pretraining methods require action labels or samedomain data, limiting crossdomain transfer.

VeoRL: Video-Enhanced Offline RL

Leverage diverse unlabeled videos to improve offline RL performance

Latent Behavior Abstraction

- Behavior abstraction network
 (BAN) based on vector
 quantization is designed to obtain a discretized latent action space.
- For two consecutive observations,
 BAN selects the nearest codebook
 vector as the latent behavior.
- Apply MMD loss to align visual embeddings, enabling BAN use on out-of-domain (OOD) videos.

Two-Stream World Model

Trunk Net:

$$\begin{cases} h_t = \text{GRU}(s_{t-1}, a_{t-1}; \theta) \\ z_t \sim p(h_t; \theta) \\ z_t' \sim q(h_t, e_t; \theta) \\ \hat{o}_t \sim p(s_t; \theta) \\ \hat{r}_t \sim p(s_t; \theta) \end{cases}$$

- Hierarchical world model
- Trunk Net that captures future state transitions driven by real actions and the associated environmental rewards on target dataset.

Plan Net:

$$\begin{cases} h_t = \text{GRU}(s_{t-1}, a_{t-1}; \theta) \\ z_t \sim p(h_t; \theta) \\ z_t' \sim q(h_t, e_t; \theta) \\ \hat{o}_t \sim p(s_t; \theta) \\ \hat{r}_t \sim p(s_t; \theta) \end{cases} \begin{cases} \bar{h}_t = \text{GRU}(\bar{s}_{t-1}, \bar{a}_{t-1}; \bar{\theta}) \\ \bar{z}_t \sim p(\bar{h}_t; \bar{\theta}) \\ \bar{z}_t' \sim q(\bar{h}_t, e_t; \bar{\theta}) \\ \bar{o}_t \sim p(\bar{s}_t; \theta) \\ \bar{a}_t = F_{\text{BC}}(\bar{s}_t; \bar{\theta}) \end{cases}$$

- Plan Net that learns to predict future trajectories based on highlevel behavior abstractions.
- Behavior cloning module that predicts latent behaviors based solely on the state.

Model-Based Policy Learning

 Policy network and value network are optimized over two-stream imagined trajectories generated by both the trunk net and the plan net.

Model-Based Policy Learning

- Policy network and value network are optimized over two-stream imagined trajectories generated by both the trunk net and the plan net.
- They are additionally conditioned on the estimated latent behavior to incorporate high-level control guidance.

$$\bar{a}_t = F_{\rm BC}(s_t)$$

Policy network: $\pi_{\phi}(a_t \mid s_t, \bar{a}_t)$

Value network: $v_{\psi}(s_t, \bar{a}_t)$

Model-Based Policy Learning

- Policy network and value network are optimized over two-stream imagined trajectories generated by both the trunk net and the plan net.
- They are additionally conditioned on the estimated latent behavior to incorporate high-level control guidance.
- A goal-conditioned intrinsic reward is proposed to align the target policy with the behavior abstractions.

$$\bar{r}_t = -\|s_t, \bar{s}_t\|_2$$

Experiments

Three visual RL environments:

- Meta-World robotic manipulation
- CARLA autonomous driving
- MineDojo open-world games

Meta-World robotic manipulation

CARLA autonomous driving

MineDojo open-world games

a

Source domain

Target domain

Ablation studies

Methods	DreamerV2	DreamerV3	VeoRL(DV2)	VeoRL(DV3)
Success Rate				
Drawer Open Handle Press	$0.18 \pm 0.04 \\ 0.33 \pm 0.11$	0.00 ± 0.00 0.05 ± 0.05	0.70 ± 0.07 0.60 ± 0.12	0.55 ± 0.15 0.35 ± 0.15
Episode Return				
Drawer Open Handle Press	$1168.35 \pm 59.55 \\ 1201.75 \pm 422.10$	674.55 ± 79.04 257.85 ± 247.05	1953.60 ± 121.48 2650.90 ± 619.60	1393.50 ± 122.50 1360.15 ± 547.85

Thanks for your watching!

Project page