REG: Rectified Gradient Guidance for Conditional Diffusion Models

Zhengqi Gao¹, Kaiwen Zha¹, Tianyuan Zhang¹, Zihui Xue², Duane S. Boning¹

¹ Massachusetts Institute of Technology

² University of Texas at Austin

Contact: <u>zhengqi@mit.edu</u>

Introduction

Diffusion models have achieved great success in generative ML tasks.

Audio Synthesis

Protein Design

Preliminary

The math behind diffusion model (DDPM formulation) is a Markov chain:

Forward Noising

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t|\sqrt{\alpha}_t\mathbf{x}_{t-1}, (1-\alpha_t)\mathbf{I})$$
$$q(\mathbf{x}_{0:T}|\mathbf{y}) = q(\mathbf{x}_0|\mathbf{y})\prod_{t=1}^T q(\mathbf{x}_t|\mathbf{x}_{t-1})$$

Reverse Denoising

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{y}) = \mathcal{N}(\mathbf{x}_{t-1}|\boldsymbol{\mu}_{\theta,t}, \sigma_{t}^{2}\mathbf{I})$$
$$p_{\theta}(\mathbf{x}_{0:T}|\mathbf{y}) = p_{\theta}(\mathbf{x}_{T}|\mathbf{y}) \prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t}, \mathbf{y})$$

where
$$oldsymbol{\mu}_{ heta,t} = rac{1}{\sqrt{lpha_t}} \left(\mathbf{x}_t - rac{1-lpha_t}{\sqrt{1-ar{lpha}_t}} oldsymbol{\epsilon}_{ heta}(\mathbf{x}_t,t,\mathbf{y})
ight)$$

Preliminary

Guidance technique is critical for conditional diffusion models.

Classifier guidance (CG): $\bar{\epsilon}_{\theta,t} = \epsilon_{\theta,t} - w\sqrt{1-\bar{\alpha}_t}\nabla_{\mathbf{x}_t}\log p_{\phi}(\mathbf{y}|\mathbf{x}_t)$

Classifier free guidance (CFG): $\bar{\epsilon}_{\theta,t} = \epsilon_{\theta,t} + w \left(\epsilon_{\theta,t} - \epsilon_{\theta}(\mathbf{x}_t,t) \right)$

Autoguidance (AutoG): $\bar{\epsilon}_{\theta,t} = \epsilon_{\theta,t} + w \left(\epsilon_{\theta,t} - \epsilon_{\theta_{bad}}(\mathbf{x}_t,t,\mathbf{y}) \right)$

w/o guidance [1]

w/ CFG [1]

Preliminary

Original guidance motivation/theory:

Sample from marginal scaled distributions [1]: $\bar{p}_{\theta}(\mathbf{x}_t|\mathbf{y}) \propto p_{\theta}(\mathbf{x}_t|\mathbf{y}) \cdot R_t(\mathbf{x}_t,\mathbf{y})$

$$=> \quad (*) \quad \bar{\epsilon}_{\theta,t} = \epsilon_{\theta,t} - \sqrt{1 - \bar{\alpha}_t} \nabla_{\mathbf{x}_t} \log R_t(\mathbf{x}_t, \mathbf{y}) \text{ using score function: } \nabla_{\mathbf{x}_t} \log p_{\theta}(\mathbf{x}_t | \mathbf{y}) = -\frac{\epsilon_{\theta}(\mathbf{x}_t, t, \mathbf{y})}{\sqrt{1 - \bar{\alpha}_t}}$$

With the following scale factors, recover the equations in previous page.

CG:
$$R_t(\mathbf{x}_t, \mathbf{y}) = [p_{\phi, X_t}(\mathbf{y}|\mathbf{x}_t)]^w$$

CFG:
$$R_t(\mathbf{x}_t, \mathbf{y}) = \left[\frac{p_{\theta, X_t}(\mathbf{x}_t|\mathbf{y})}{p_{\theta, X_t}(\mathbf{x}_t)}\right]^w$$

AutoG:
$$R_t(\mathbf{x}_t, \mathbf{y}) = \left[\frac{p_{\theta, X_t}(\mathbf{x}_t|\mathbf{y})}{p_{\theta_{\text{bad}}, X_t}(\mathbf{x}_t|\mathbf{y})}\right]^w$$

Problem: Cannot specificy all R_t since $R_{t-1}(\mathbf{x}_{t-1}, \mathbf{y}) \propto \frac{\mathbb{E}\left[\mathcal{N}(\mathbf{x}_{t-1}|\bar{\boldsymbol{\mu}}_{\theta,t}, \sigma_t^2 \mathbf{I}) R_t(\mathbf{x}_t, \mathbf{y})\right]}{\mathbb{E}\left[\mathcal{N}(\mathbf{x}_{t-1}|\boldsymbol{\mu}_{\theta,t}, \sigma_t^2 \mathbf{I})\right]}$

Rectified Gradient Guidance

Correct formulation w/ joint scaling: $\bar{p}_{\theta}(\mathbf{x}_{0:T}|\mathbf{y}) \propto p_{\theta}(\mathbf{x}_{0:T}|\mathbf{y}) \cdot R_0(\mathbf{x}_0,\mathbf{y})$

Theorem 1: To satisfy this scaled goal, we must have a unique set of transition kernels:

$$\bar{p}_{\theta}(\mathbf{x}_t|\mathbf{x}_{t+1},\mathbf{y}) = \frac{E_t(\mathbf{x}_t,\mathbf{y})}{E_{t+1}(\mathbf{x}_{t+1},\mathbf{y})} p_{\theta}(\mathbf{x}_t|\mathbf{x}_{t+1},\mathbf{y}), \quad E_t(\mathbf{x}_t,\mathbf{y}) = \int p_{\theta}(\mathbf{x}_0|\mathbf{x}_t,\mathbf{y}) R_0(\mathbf{x}_0,\mathbf{y}) d\mathbf{x}_0$$

It implies the noise prediction network should be: $\bar{p}_{\theta}(\mathbf{x}_t|\mathbf{y}) = \frac{E_t(\mathbf{x}_t,\mathbf{y})}{E(\mathbf{y})}p_{\theta}(\mathbf{x}_t|\mathbf{y})$

where t = 0, 1, ..., T and $x_T = \emptyset$, which determines:

$$\bar{\boldsymbol{\epsilon}}_{\theta,t}^{\star} = \boldsymbol{\epsilon}_{\theta,t} - \sqrt{1 - \bar{\alpha}_t} \nabla_{\mathbf{x}_t} \log E_t(\mathbf{x}_t, \mathbf{y})$$
 (*)

Rectified Gradient Guidance

- Present implementation (*) compared with golden (*): off by one term, R_t should be E_t .
- See our paper for theoretical bounds on the gap between (*) and (*)
- Since (*) is only an approximation to (*), is there an even better approximation?

$$\bar{\boldsymbol{\epsilon}}_{\theta,t}^{\text{REG}} = \boldsymbol{\epsilon}_{\theta,t} - \sqrt{1 - \bar{\alpha}_t} \nabla_{\mathbf{x}_t} \log R_t(\mathbf{x}_t, \mathbf{y}) \underbrace{\odot \left(1 - \sqrt{1 - \bar{\alpha}_t} \frac{\partial (\mathbf{1}^T \cdot \boldsymbol{\epsilon}_{\theta,t})}{\partial \mathbf{x}_t} \right)}_{\text{REG correction term}}$$

Numerical Results

Class-conditional ImageNet generation

Figure. Pareto Front of FID v.s. IS when sweeping guidance weight.

Resolution	Benchmark	FID↓	IS ↑
64×64	EDM2-S	1.580	
	+ AutoG	1.044	69.01
	+ REG (ours)	1.035 ↓	69.01
256×256	DiT-XL/2	9.62	121.50
	+ Vanilla CFG	2.21	248.36
	+ REG (ours)	2.04 👃	276.26 ↑
	+ Cosine CFG	2.30	300.73
	+ REG (ours)	1.76 ↓	287.48
	+ Linear CFG	2.23	268.69
	+ REG (ours)	2.18 👃	284.20 ↑
	+ Interval CFG	1.95	250.44
	+ REG (ours)	1.86 ↓	259.57 ↑
	EDM2-S	2.56	
	+ Vanilla CFG	2.29	268.56
	+ REG (ours)	2.02 👃	275.30 ↑
	+ Cosine CFG	2.16	282.46
	+ REG (ours)	1.99↓	291.77 ↑
	+ Linear CFG	2.21	282.89
	+ REG (ours)	1.99↓	291.04 ↑
	+ Interval CFG	1.67	287.45
512×512	+ REG (ours)	1.67	288.43 ↑
312/312	EDM2-XXL	1.91	
	+ Vanilla CFG	1.83	265.76
	+ REG (ours)	1.74 ↓	289.24 ↑
	+ Cosine CFG	1.80	261.94
	+ REG (ours)	1.69 ↓	268.84 ↑
	+ Linear CFG	1.81	262.03
	+ REG (ours)	1.69 ↓	268.30 ↑
	+ Interval CFG	1.45	283.26
	+ REG (ours)	1.45	288.72 ↑

Table. Class-conditional ImageNet generation results

Numerical Results

Text-to-Image generation on COCO 2017-5k

Figure. Pareto Front of FID v.s. CLIP when sweeping guidance weight.

Model	Benchmark	FID↓	CLIP (%) †
	+ Vanilla CFG	20.27	30.68
	+ REG (ours)	19.63 👃	30.75 ↑
SD-v1-4 512×512	+ Cosine CFG	23.19	30.80
	+ REG (ours)	21.35 👃	30.96 ↑
	+ Linear CFG	20.55	30.85
	+ REG (ours)	20.27 ↓	30.87 ↑
	+ Vanilla CFG	23.73	31.38
	+ REG (ours)	23.46 \	31.51 ↑
SD-XL 1024×1024	+ Cosine CFG	32.14	31.58
	+ REG (ours)	25.62 \	31.66 ↑
	+ Linear CFG	24.43	31.55
	+ REG (ours)	23.67 👃	31.58 ↑

Table. Text-to-Image generation results

Conclusions

- We identify the flaw in present guidance theory for conditional diffusion models.
- We propose the correct guidance theory from scaling the joint distribution.
- The theory inspired REG method can consistently boost existing guidance methods
 - At the cost of memory and runtime increasing

Model	# Param	Sampler	Prediction
DiT-XL/2	675 M	250-step DDPM	ϵ -prediction \mathbf{x}_0 -prediction \mathbf{x}_0 -prediction
EDM2-S	280 M	2nd Heun	
EDM2-XXL	1.5 B	2nd Heun	
SD-v1-4	860 M	PNDM	ϵ -prediction ϵ -prediction
SD-XL	2.6 B	Euler Discrete	

Table. Summary of models used in our experiment.

Model	Resolution / BS	CFG / REG Runtime (sec)
EDM2-S	64 / 8	25.96 / 42.99 (1.66×)
DiT-XL/2	256 / 8	59.79 / 94.23 (1.58×)
EDM2-S	512/8	46.14 / 62.87 (1.36×)
EDM2-XXL	512/8	49.21 / 92.60 (1.88×)
SD-v1-4	512/4	32.63 / 39.54 (1.21×)
SD-XL	1024 / 2	47.48 / 74.52 (1.57×)
Model	Resolution / BS	CFG / REG Memory (GB)
Model	Resolution / DS	Cro / REG Melliory (GB)
EDM2-S	64 / 1	0.87 / 1.49 (1.71×)
EDM2-S	64 / 1	0.87 / 1.49 (1.71×)
EDM2-S DiT-XL/2	64 / 1 256 / 1	0.87 / 1.49 (1.71×) 4.15 / 5.01 (1.21×)
EDM2-S DiT-XL/2 EDM2-S	64 / 1 256 / 1 512 / 1	0.87 / 1.49 (1.71×) 4.15 / 5.01 (1.21×) 1.19 / 1.81 (1.52×)

Table. Memory and runtime overhead.

