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(a) and (b) show the current mainstream one-stream 

and two-stream networks, respectively. Besides the 

limitation of neglecting the pixel-level alignment 

characteristics of multi-modal images, current 

methods also face the challenge of balancing the 

modality-specific and modality-shared 

representation in a unified network.

(c) shows our proposed MFRNet and 'RE' refers to 

the representation expert. MFRNet inherits the idea 

of MoE and extends it with multi-modal fusion 

(FFM) and representation (FRM), allowing it to 

achieve fine-grained interaction and efficient 

representation for multi-modal data.

Contribution

(1) We propose a Modality Fusion and Representation Network (MFRNet) 

for multi-modal object re-identification, which inherits the idea of a 

sparse mixture of experts and extends it with multi-modal fusion and 

representation.

(2) We introduce a Feature Fusion Module (FFM) and a Feature 

Representation Module (FRM). The former aims to achieve fine-grained 

interaction between multi-modal inputs, while the latter aims to achieve 

efficient and balanced feature extraction between modality-shared and 

modality-specific representations.

(3) Extensive experiments on three public multi-spectral object ReID 

datasets including RGBNT201, RGBNT100, and MSVR310, verifying 

the superior performance of MFRNet.
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Experiments

MFRNet is built from the basic Transformer blocks inherited from vanilla ViT, with

two new modules (feature fusion module and feature representation module) added to

adapt to multi-modal object re-identification tasks.

In the blue box, the Feature Fusion Module (FFM) employs multiple simple generators

to adaptively provide fine-grained interaction information, while in the green box, the

Feature Representation Module (FRM) employs diverse representation experts to

extract and combine modality-specific and modality-shared features. Here, GE refers to

the generation experts in FFM, while RE represents the representation experts in FRM.

Notably, the figure illustrates the NIR+RGB→TIR interaction, with the same

interaction applying to NIR and RGB.

It can be observed that Expert 0 concentrates on 

extracting pedestrian features in the NIR modality, 

while Experts 1, 2, and 3 focus on pedestrian regions in 

the RGB and TIR modalities. Additionally, Experts 4 

and 5 tend to extract background features across all 

modalities. As our initial hypothesis predicted, 

semantically similar content achieves knowledge 

sharing through selecting analogous experts, while 

modality-specific representations that resist fusion 

maintain their distinct characteristics via dedicated 

expert allocation.

Fig. 1: Motivation of proposed MFRNet.

Fig. 2: Overall architecture of MFRNet.

Fig. 3: Visualization Result.
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