TimeDART: A Diffusion Autoregressive Transformer for Self-Supervised Time Series Representation

Daoyu Wang, Mingyue Cheng*, Zhiding Liu, Qi Liu

The 42nd International Conference on Machine Learning

June 14th, 2025

Overview

- Statement of the Problem
- Motivation
- The Proposed TimeDART
- Experiments
- Analysis
- Conclusion

Statement of the Problem

Questions

- What is Time Series data?
- What is Self-Supervised Time Series
 Representation Learning?
- How to evaluate this task?

Answers

- Time series data is a sequence of data points recorded in chronological order, defined by its sequential and temporal characteristics.
- This pre-training approach learns transferable representations from unlabeled time series data by generating supervision from the data's own structure.
- This task is evaluated by fine-tuning the pre-trained model on downstream tasks, such as forecasting and classification.

Motivation

The Problem:

Existing self-supervised methods have limitations:

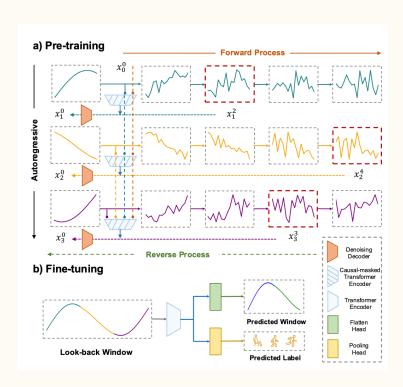
- Masked Reconstruction: Excel at learning patterns but can have inconsistencies between pre-training and fine-tuning.
- Contrastive Discrimination: Are great for sequence-level distinctions but may miss fine-grained temporal details.
- Autoregressive Prediction: Naturally model time flow but tend to overfit noise and make an overly simplistic Gaussian distribution assumption.

Core Insight

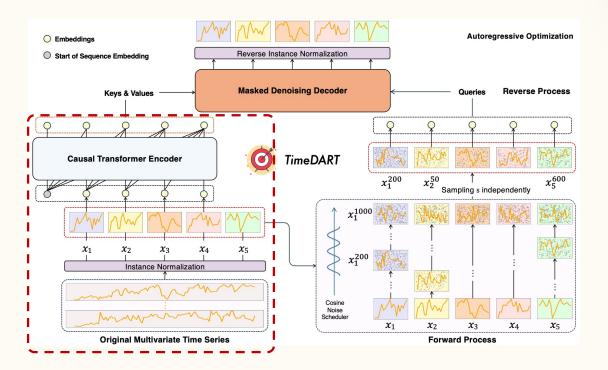
Our Core Idea:

We unify two powerful generative model to learn more transferable representations, TimeDART combines:

- Autoregressive Modeling: To capture long-term global dynamic evolution.
- **Denoising Diffusion Process**: To capture subtle, fine-grained local evolution.



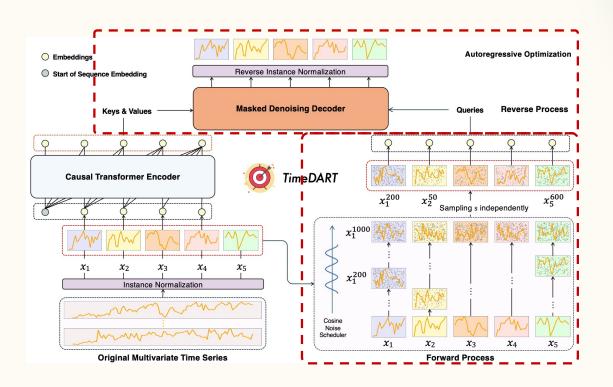
TimeDART (I)



Causal Transformer Encoder (Global Trend)

- The input time series is divided into nonoverlapping patches.
- A Causal Transformer processes these patches, ensuring it only attaches past information.

TimeDART (II)



Patch-level Diffusion and Denoising (Local Patterns)

- We independently add noise to each patch.
- A Denoising Decoder then uses the contextualized output from the encoder to reconstruct the original, clean patch from its noisy version.

TimeDART (III)

$$\mathcal{L}_{ ext{mse}} \propto \sum_{j=1}^{N} ||x_j^0 - ext{Projector}(f(oldsymbol{z}_{1:j-1}^{in}))||^2.$$

$$\begin{split} \frac{1}{2\sigma^2}||x_j^0 - \operatorname{Projector}(f(\boldsymbol{z}_{1:j-1}^{in}))||^2 = \\ -\log \mathcal{N}(x_j^0; \operatorname{Projector}(f(\boldsymbol{z}_{1:j-1}^{in})), \sigma^2) + C, \end{split}$$

$$\mathcal{L}_{ ext{diff}} = \sum_{j=1}^N \mathbb{E}_{\epsilon,q(x_j^0)} \left[||x_j^0 - g(\hat{z}_j^{in}, \ f(oldsymbol{z}_{1:j-1}^{in}))||^2
ight].$$

The Self-Supervised Objective

- Our diffusion loss trains the model to denoising each patch, guided by the autoregressive history.
- We avoid to making an overly simplistic Gaussian distribution assumption that the pure autoregressive objective has.

Experiments

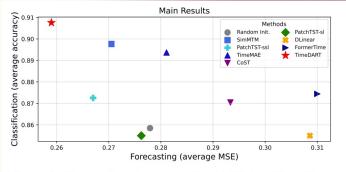


Figure 3: Comparison between TimeDART and baselines for the forecasting task (MSE \downarrow) across forecasting datasets on the x-axis and the classification task (Accuracy \uparrow) across classification datasets on the y-axis.

Experimental Setup

- Evaluated on 9 public datasets for forecasting and classification tasks.
- Compared against strong self-supervised and supervised baselines.

Experiments

Table 2: Multivariate time series forecasting results. All results are averaged MSE and Mean Absolute Error (MAE) from 4 different predicted windows of $\{12, 24, 36, 48\}$ for PEMS datasets and $\{96, 192, 336, 720\}$ for others. The best results are in **bold** and the second best are <u>underlined</u>. Full results are detailed in Appendix D.

	Ours			Self-supervised							SUPERVISED					
METHODS	TIME	DART	RANDO	M INIT.	SIM	MTM	PATC	HTST	TIME	MAE	Co	ST	PATC	HTST	DLIN	NEAR
METRIC	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE
ETTH1	0.411	0.426	0.439	0.444	0.409	0.428	0.433	0.437	0.434	0.445	0.465	0.464	0.427	0.435	0.439	0.449
ETTH2	0.346	0.387	0.358	0.396	0.353	0.390	0.354	0.393	0.402	0.431	0.399	0.427	0.357	0.395	0.458	0.459
ETTM1	0.344	0.379	0.351	0.383	0.348	0.385	0.342	0.380	0.350	0.383	0.356	0.385	0.362	0.388	0.361	0.383
ETTM2	0.257	0.316	0.269	0.323	0.263	0.320	0.272	0.327	0.270	0.326	0.282	0.343	0.270	0.329	0.281	0.343
ELECTRICITY	0.163	0.254	0.177	0.277	0.162	0.256	0.163	0.255	0.196	0.309	0.215	0.295	0.167	0.260	0.168	0.265
TRAFFIC	0.388	0.263	0.410	0.277	0.392	0.264	0.404	0.272	0.410	0.275	0.435	0.362	0.421	0.284	0.435	0.297
WEATHER	0.226	0.263	0.231	0.268	0.230	0.271	0.227	0.262	0.227	0.265	0.242	0.282	0.226	0.263	0.246	0.298
EXCHANGE	0.359	0.405	0.440	0.450	0.451	0.455	0.376	0.413	0.427	0.446	0.456	0.455	0.379	0.414	0.393	0.425
PEMS03	0.152	0.257	0.164	0.266	0.158	0.260	0.156	0.261	0.165	0.269	0.169	0.273	0.178	0.288	0.277	0.373
PEMS04	0.133	0.245	0.145	0.255	0.143	0.253	0.139	0.249	0.144	0.256	0.147	0.262	0.149	0.266	0.290	0.381
PEMS07	0.128	0.232	0.138	0.243	0.131	0.236	0.132	0.237	0.137	0.241	0.139	0.245	0.149	0.253	0.322	0.387
PEMS08	0.201	0.282	0.213	0.293	0.206	0.286	0.206	0.287	0.211	0.292	0.215	0.295	0.230	0.295	0.359	0.402

Table 4: Multivariate time series classification results. Results are are reported as Accuracy (Acc.) and Macro-F1 (F1). The best results are in **bold** and the second best are <u>underlined</u>.

	Ours				Self-supervised							SUPERVISED		
METHODS	TIMEDART		RANDOM INIT.		SIMMTM		PATCHTST		TIMEMAE		CoST		FORMERTIME	
METRIC	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1
HAR	0.9247	0.9286	0.8738	0.8723	0.9200	0.9220	0.8789	0.8773	0.9204	0.9248	0.8997	0.8927	0.8816	0.8878
EPILEPSY	0.9712	0.9698	0.9265	0.9237	0.9565	0.9543	0.9312	0.9234	0.9459	0.9584	0.9198	0.9156	0.9315	0.9341
EEG	0.8269	0.5983	0.7752	0.5138	0.8165	0.6123	0.8076	0.5460	0.8148	0.5787	0.7918	0.5314	0.8102	0.5658

Key Results:

- Forecasting: Achieving state-of-the-art results on 83.3% of the metrics, with a 6.8% MSE reduction over random initialization.
- Classification: Surpassed all baselines, including specialized supervised methods, improving accuracy by 5.7%.

Analysis

Why does it work?

- Ablation Study: Removing either the autoregressive part or the diffusion part causes a major drop in performance, proving both are essential.
- Different Backbone: TCN as backbone also works!

Table 5: Performance of TCN as backbone. Average MSE and MAE from 4 different predicted windows for forecasting while Accuracy and Macro-F1 for classification task.

Метнор	Т	CN	RANDO	M INIT.	TRANSFORMER		
FORECASTING	MSE	MAE	MSE	MAE	MSE	MAE	
ETTH2 ETTM2 ELECTRICITY PEMS04	0.349 0.263 0.165 0.134	0.396 0.323 0.254 0.246	0.357 0.269 0.177 0.145	0.403 0.326 0.278 0.256	0.346 0.257 0.163 0.133	0.387 0.316 0.254 0.245	
CLASSIFICATION	Acc.	F1	Acc.	F1	Acc.	F1	
HAR Epilepsy	0.9252 0.9723	0.9250 0.9689	0.8842 0.9525	0.8901 0.9513	0.9247 0.9712	0.9249 0.9698	

Table 6: The results of ablation study. Average MSE and MAE from 4 different predicted windows for forecasting while Accuracy and Macro-F1 for classification task.

Метнор	TIMEDART		w/c	AR	w/o	DIFF	w/o AR-DIFF		
FORECASTING	MSE	MAE	MSE	MAE	MSE	MAE	MSE	MAE	
ETTH2 ETTM2 ELECTRICITY PEMS04	0.346 0.257 0.163 0.133	0.387 0.316 0.254 0.245	0.365 0.281 0.193 0.144	0.399 0.338 0.304 0.255	0.352 0.265 0.164 0.145	0.391 0.322 0.255 0.256	0.364 0.285 0.190 0.149	0.398 0.346 0.299 0.260	
CLASSIFICATION	Acc.	F1	Acc.	F1	Acc.	F1	Acc.	F1	
HAR EPILEPSY							0.8785 0.9486		

Analysis

Deeper analysis:

- **Few-Shot:** Fine-tuned on only 10% of data, TimeDART beats supervised models trained on 100% of the data.
- Linear Probing: Just training a linear head on top of the frozen pre-trained encoder also yields strong results, confirming the high quality of the learned representations.
- Handles Extended-Length Inputs: TimeDART is pre-trained to handle noise, so its performance consistently improves with longer look-back windows, unlike methods that struggle with the noise in longer series.

Conclusion

- We introduce TimeDART. A novel SSL framework that unifies autoregressive modeling and denoising diffusion process.
- It effectively captures both global trends and local patterns.
- It establishes a new state-of-the-art and learns highly data-efficient representations.

Q&A Session

Thank you for listening!

My Github

TimeDART Code

