University of Science and Technology of China

TimeDART: A Diffusion Autoregressive Transformer

for Self-Supervised Time Series Representation

Daoyu Wang, Mingyue Cheng*, Zhiding Liu, Qi Liu

The 429 International Conference on Machine Learning June 14th, 2025



Overview

 Statement of the Problem
* Motivation

* The Proposed TimeDART

* Experiments

* Analysis

 Conclusion



Statement of
the Problem

Questions

* What is Time Series data?
* What is Self-Supervised Time Series
Representation Learning?

* How to evaluate this task?

Answers

* Time series data is a sequence of data

points recorded in chronological order,
defined by its sequential and temporal
characteristics.

This pre-training approach learns
transferable representations from
unlabeled time series data by generating
supervision from the data's own structure.

This task is evaluated by fine-tuning the
pre-trained model on downstream tasks,
such as forecasting and classification.



Motivation

The Problem:
Existing self-supervised methods have limitations:

+ Masked Reconstruction: Excel at learning patterns but can have
inconsistencies between pre-training and fine-tuning.

» Contrastive Discrimination: Are great for sequence-level distinctions
but may miss fine-grained temporal details.

* Autoregressive Prediction: Naturally model time flow but tend to overfit

noise and make an overly simplistic Gaussian distribution assumption.



Core Insight
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Patch-level Diffusion and Denoising
(Local Patterns)

* We independently add noise to each patch.

* A Denoising Decoder then uses the
contextualized output from the encoder to
reconstruct the original, clean patch from

its noisy version.
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Experiments

— Main Results
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Figure 3: Comparison between TimeDART and baselines
for the forecasting task (MSE |) across forecasting datasets
on the z-axis and the classification task (Accuracy 1) across
classification datasets on the y-axis.

Experimental Setup

» Evaluated on 9 public datasets for
forecasting and classification tasks.
» Compared against strong self-supervised

and supervised baselines.



Experiments

Table 2: Multivariate time series forecasting results. All results are averaged MSE and Mean Absolute Error (MAE) from 4
different predicted windows of {12,24, 36,48} for PEMS datasets and {96, 192, 336, 720} for others. The best results are

in bold and the second best are underlined. Full results are detailed in Appendix D. K ey R e s u It s:

OURS SELF-SUPERVISED SUPERVISED
METHODS TIMEDART  RANDOM INIT SIMMTM PATCHTST TIMEMAE CoST PATCHTST DLINEAR
METRIC MSE MAE MSE MAE | MSE MAE MSE MAE MSE MAE MSE MAE | MSE MAE MSE MAE
ETTHI 0.411 0.426 0.439 0.444 | 0.409 0.428 0.433 0.437 0.434 0.445 0.465 0.464 | 0.427 0.435 0.439 0.449

ETTH2 0.346 0.387 0.358 0.396 | 0.353 0.390 0.354 0.393 0.402 0.431 0.399 0.427 | 0.357 0.395 0.458 0.459 o B A h' 3 f h I
ETTMI 0.344 0.379 0.351 0.383 | 0.348 0.385 0.342 0.380 0.350 0.383 0.356 0.385 | 0.362 0.388 0.361 0.383 ® Forecastlng. C |eV| ng State_o _t e_art resu tS On
ETTM2 0.257 0.316 0. 323 1 0.263 0.320 0.272 0.327 0.270 0.326 0.282 0.343 | 0.270 0.329 0.281 0.343
ELECTRICITY | 0.163 0.254 0.162 0.256 0.163 0.255 0.196 0.309 0.215 0.295 | 0.167 0.260 0.168 0.265 o, . > o .
TRAFFIC 0.388 0.263 0.392 0.264 0.404 0.272 0.410 0.275 0.435 0.362 | 0.421 0.284 0.435 0.297 8 3 3 / f h rY] h 6 8 / MS E d
WEATHER 0.226 0.263 0.230 0.271 0.227 0.262 0.227 0.265 0.242 0.282 | 0.226 0.263 0.246 0.298 % o O t e et r I CS’ W I t a * o re u Ct I O n
EXCHANGE | 0.359 0.405 0.451 0.455 0.376 0.413 0.427 0.446 0.456 0.455 | 0.379 0.414 0.393 0.425
PEMS03 0.152  0.257 0.158 0.260 0.156 0.261 0.165 0.269 0.169 0.273 | 0.178 0.288 0.277 0.373 d = i I' 2
PEMS04 0.133  0.245 0.143 0.253 0.139 0.249 0.144 0.256 0.147 0.262 | 0.149 0.266 0.290 0.381 Over ran OI I I I nltla |Zat|on.
PEMS07 0.128 0.232 0.131 0.236 0.132 0.237 0.137 0.241 0.139 0.245 | 0.149 0.253 0.322 0.387
PEMS08 0.201 0.282 0.206 0.286 0.206 0.287 0.211 0.292 0.215 0.295 | 0.230 0.295 0.359 0.402

» Classification: Surpassed all baselines, including

Table 4: Multivariate time series classification results. Results are are reported as Accuracy (Acc.) and Macro-F1 (F1). The
best results are in bold and the second best are underlined.

OURS SELF-SUPERVISED SUPERVISED
METHODS TIMEDART RANDOM INIT SIMMTM PATCHTST TIMEMAE CoST FORMERTIME

METRIC | AcC. Fl Acc. F1 Acc. Fl Acc. F1 Acc. Fl Acc. F1 Acc. Fl accuracy by 5.7%

HAR 0.9247 0.9286 0.8738 0.8723 | 0.9200 0.9220 0.8789 0.8773 0.9204 0.9248 0.8997 0.8927 | 0.8816 0.8878
EPILEPSY | 0.9712 0.9698 0.926° 0.9565 0.9543 0.9312 0.9234 0.9459 0.9584 0.9198 0.9156 | 0.9315 0.9341
EEG 0.8269 0.5983 0.77% 0.8165 0.6123 0.8076 0.5460 0.8148 0.5787 0.7918 0.5314 ‘ 0.8102 0.5658

specialized supervised methods, improving




. Why does it work?

A n a IyS I S » Ablation Study: Removing either the autoregressive part or
the diffusion part causes a major drop in performance,
proving both are essential.

» Different Backbone: TCN as backbone also works!

Table 5: Performance of TCN as backbone. Average MSE  Table 6: The results of ablation study. Average MSE and
and MAE from 4 different predicted windows for forecast- MAE from 4 different predicted windows for forecasting

ing while Accuracy and Macro-F1 for classification task. while Accuracy and Macro-F1 for classification task.
METHOD | TCN RANDOM INIT. | TRANSFORMER METHOD | TIMEDART w/o AR w/oDIFF  w/o AR-DIFF
FORECASTING | MSE MAE MSE MAE ‘ MSE MAE FORECASTING ‘ MSE MAE MSE MAE MSE MAE MSE MAE
ETTH2 0.349 0.396 0.357 0.403 | 0.346 0.387 ETTH2 0.346 0.387 0.365 0.399 0.352 0.391 0.364 0.398
ETTM2 0.263 0.323 0.269 0.326 | 0.257 0.316 ETTM2 0.257 0.316 0.281 0.338 0.265 0.322 0.285 0.346
ELECTRICITY 0.165 0.254 0.177 0278 | 0.163 0.254 ELECTRICITY | 0.163 0.254 0.193 0.304 0.164 0.255 0.190 0.299
PEMS04 0.134 0.246 0.145 0.256 | 0.133 0.245 PEMS04 0.133 0.245 0.144 0.255 0.145 0.256 0.149 0.260
CLASSIFICATION | AcCC. F1 AcCC. F1 ‘ AcC. F1 CLASSIF[CATION‘ Acc. F1 Acc. F1 Acc. F1 Acc. F1

HAR 0.9252 0.9250 08842 0.8901 | 0.9247 0.9249 HAR 0.9247 0.9286 0.8966 0.8994 0.9002 0.9028 0.8785 0.8756

EPILEPSY 0.9723 0.9689 0.9525 0.9513|0.9712 0.9698 EPILEPSY 0.9712 0.9698 0.9505 0.9518 0.9598 0.9586 0.9486 0.9472




Analysis

Deeper analysis:

Few-Shot: Fine-tuned on only 10% of data, TimeDART beats
supervised models trained on 100% of the data.

Linear Probing: Just training a linear head on top of the
frozen pre-trained encoder also yields strong results,
confirming the high quality of the learned representations.
Handles Extended-Length Inputs: TimeDART is pre-trained
to handle noise, so its performance consistently improves
with longer look-back windows, unlike methods that struggle

with the noise in longer series.



Conclusion

* We introduce TimeDART. A novel SSL framework that
unifies autoregressive modeling and denoising
diffusion process.

* It effectively captures both global trends and local
patterns.

* It establishes a new state-of-the-art and learns
highly data-efficient representations.




Q&A Session

Thank you for listening!
My Github TimeDART Code
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