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Wasserstein DRO

Given a cost function c : Rd+1 × Rd+1 → R+, the Wasserstein
Transport Cost between two measures P and Q is

Dc(P,Q) := infπ∈Π(P,Q)

∫
c(U, V ) dπ , s.t. U ∼ P, V ∼ Q.
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Dc(P,Q) := inf
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∫
c(U, V ) dπ, s.t. U ∼ P, V ∼ Q.

The Wasserstein distributionally robust optimization (WDRO)
framework solves the minimax stochastic program:

infβ supP∈Bδ(P∗
N ;c) EP[ℓ(X,Y ;β)]
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Given a cost function c : Rd+1 × Rd+1 → R+, the Wasserstein
Transport Cost between two measures P and Q is

Dc(P,Q) := inf
π∈Π(P,Q)

∫
c(U, V ) dπ, s.t. U ∼ P, V ∼ Q.

The Wasserstein distributionally robust optimization (WDRO)
framework solves the minimax stochastic program:

inf
β

sup
P∈Bδ(P∗

N ;c)
EP[ℓ(X,Y ;β)]

where Bδ(P∗
N ; c) is an ambiguity set of candidate measures for P∗,

constructed as a δ-ball around the empirical measure P∗
N :

Bδ(P∗
N ; c) := {P ∈ P(Rd+1)|Dc(P,P∗

N ) ≤ δ}

2 / 6



WDRO Linear Regression

It is shown that using the cost function

cq,0
(
(x, y), (u, v)

)
= ∥x− u∥2q +∞ · |y − v|

equates WDRO linear regression with p-norm regularization on
RMSE.
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WDRO Linear Regression

It is shown that using the cost function

cq,0
(
(x, y), (u, v)

)
= ∥x− u∥2q +∞ · |y − v|,

equates WDRO linear regression with p-norm regularization on
RMSE.

Theorem 1 ((Blanchet, Kang, & Murthy, 2019, Theorem 1))

For any q ∈ [1,∞] we have

inf
β∈Rd

sup
P:Bδ(cq,0)

EP
[
(Y − βTX)2

]
= inf

β∈Rd

{ √
MSEN (β) +

√
δ∥β∥p

}2

,

with (p, q) such that p−1 + q−1 = 1.
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The Knowledge-Guided Cost

With a prior knowledge θ, we control the extent of perturbation
along the direction of θ. The knowledge-guided cost function
associated to the q-norm is

cq,λ(x− u) = ∥x− u∥2q + λ · (θT(x− u))2 +∞ · |y − v|.
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The Knowledge-Guided Cost

With a prior knowledge θ, we control the extent of perturbation
along the direction of θ. The knowledge-guided cost function
associated to the q-norm is

cq,λ(x− u) = ∥x− u∥2q + λ · (θT(x− u))2 +∞ · |y − v|.

We call it

1. Strong-transferring if λ = ∞ ,

2. Weak-transferring if λ < ∞ .

Proposition 1

We have the following upper bound for strong-transferring:

inf
β

sup
P∈Bδ(cq,∞)

EP
[
(Y − βTX)2

]
≤ inf

α∈R
EP∗

N

[
(Y − (αθ)TX)2

]
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Tractable Reformulation of Knowledge-Guided WDRO

With data y ∈ RN and X ∈ RN×d, and an accessible learner
θ ∈ Rd, we study the strong-transferring estimator that solves

argmin
β

{
∥y −Xβ∥2 + δ · min

κ∈R
∥β − κθ∥p

}
,
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With data y ∈ RN and X ∈ RN×d, and an accessible learner
θ ∈ Rd, we study the strong-transferring estimator that solves

argmin
β

{
∥y −Xβ∥2 + δ ·min

κ∈R
∥β − κθ∥p

}
,

and for p = q = 2, its weak-transferring counterpart:

argmin
β

{
∥y −Xβ∥2 + δ · ∥β∥Ψλ

}
,

with Ψλ = Id −
1

∥θ∥22 + λ−1
θθT.
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Tractable Reformulation of Knowledge-Guided WDRO

With data y ∈ RN and X ∈ RN×d, and an accessible learner
θ ∈ Rd, we study the strong-transferring estimator that solves

argmin
β

{
∥y −Xβ∥2 + δmin

κ∈R
∥β − κθ∥p

}
,

and for p = q = 2, its weak-transferring counterpart:

argmin
β

{∥y −Xβ∥2 + δ∥β∥Ψλ
} ,

with Ψλ = Id −
1

∥θ∥22 + λ−1
θθT.

The hyperparameters are

1. δ ∈ [0,∞] controls the regularization strength;

2. λ ∈ [0,∞] measures our confidence in the prior knowledge θ.
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Feasibility Set

Figure 1: Feasibility Sets: Left – Strong-Transferring Regularizer
(p = q = 2, λ = ∞); Right – Weak-Transferring Regularizer (p = q = 2,
λ = 2).
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Thank you!
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