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Summary & Contribution

» K-means 1s a classic, widely used clustering algorithm.
» We show by counterexample that

LO-K-means (Our Algorithm)
» A simple modification to the K-means algorithm that ensures local
optimality with no additional complexity.

» Analysis of two local-optimality criteria—continuous (C-local) and
discrete (D-local)—shows experimentally that LO-K-means consistently
improves clustering quality.

Introduction

The K-means Clustering. Partition a set of N data points X = {xi}f\; ; with
weights W = {wi}ﬁ\; , Into K distinct clusters by minimizing the total Bregman
divergence to the cluster centers.

K N
rgicp f(P,C) = Z Z PinaWn D (xp, c)
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The K-means Algorithm (Lloyd, 1982).

1. Select K initial centers arbitrarily from X.
2. Assign each data point to the cluster with the nearest center.
3. Recalculate the center for each cluster as the mean of its assigned points.

4. Repeat 2 and 3 until cluster assignments no longer change.

Continuous Relaxation. Once an assignment matrix P 1s fixed, the optimal
centers C are uniquely determined. Since F(P) := min¢ f(P,C) is concave,
relaxing P from {0, 1}5*V to [0, 1]%*/ yields an equivalent continuous K-means
formulation with the same optimal clustering loss.

Common Misconception:

Although K-means 1s commonly assumed (e.g., in scikit-learn) to converge to
a locally optimal solution,

» The most-cited proof (Selim & Ismail, 1984) for local optimality has
some flaws.

Counterexample

Initial setup: N =5, K =2,x ={-4,-2,0,1.5,2.5},
Initial centers: ¢y =0, ¢y = 2.5.
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Not a Locally Optimal Solution!

» Shifting a small part of point O to the other cluster can further reduce the
clustering loss.

Theoretical Guarantees

Two Definitions of Local Optimality:

» C-local: (P, C) is a local optimum in the continuous relaxation.
i.e. no P’ with |P" — P|| < & such that F'(P") < F(P).

» D-local: (P, C) is a local optimum in hard clustering.
i.e. no P’ adjacent to P such that F'(P’) < F(P).

Key Condition for Local Optimality:

K-means solution (P, C) is C-local.
& The optimal assignment for the solution centers C 1s unique.

» If the optimal assignment for centers C 1s not unique, then

» Simply check 1f any point is at the same distance from two or more centers.

» Compute the exact change 1n loss when moving a single point to another
cluster by
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Numerical Experiments

» Guarantees convergence to local optimality (both continuous and discrete).

» Same per-iteration complexity as the original K-means O (NKd).

Algorithms:

» K-means

» C-LO( ; guarantees C-local optimality)

> D-LO ( ; guarantees D-local optimality)

» Min-D-LO ( ; guarantees D-local and enhances D-LO)

m Synthetic Datasets
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B Real-World Datasets

Table 1. Clustering loss (mean, min), runtime, and iterations for K-means, D-LLO, and
Min-D-LO (squared Euclidean; 20 trials) on real datasets.

Dataset Iris (N = 150,d = 4) News20 (N = 2,000, d = 1,089)

K ' Algorithm 'Mean Minimum Time(s) Num Iter Mean Minimum Time(s) Num Iter

K-means++ 29.57 26.01 < 0.001 7 697,527 643,583 0.48 23
100 D-LO++ 2892 2594 < 0.001 17 634,216 625,467 6.18 288
Min-D-LO++ 28.93 2594 < 0.001 17 634,293 625,468  2.55 125

K-means++ [13.73 12.70 < 0.001 6 529,028 487,823  1.25 26
25 D-LO++ 1258 1183 < 0.001 31 475,299 468,201 35.96 705
Min-D-LO++ 12.61 12.07 < 0.001 27 474,431 467,745 15.77 316

K-means++ 640 5.52 < 0.001 5 439,029 418,754 3.02 31
50 D-LO++ 536 5.04 0.002 37 392,016 388,746 157.97 1,228
Min-D-LO++| 5.40  5.04 0.002 30 392,146 388,990 60.41 533
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g5 | Figure 2. Clustering loss progression per

iteration for K-means, D-LLO, and Min-D-LO on
News20 (N = 2000, d = 1089, K = 10).
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» Our methods (D-LO, Min-D-LO) consistently find solutions with lower

clustering losses.

» Even with a practical iteration limit (e.g., 300 iterations), our methods still

provide significant accuracy improvements of over 15-25%.



