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Summary & Contribution

▶ K-means is a classic, widely used clustering algorithm.
▶ We show by counterexample that K-means does not necessarily converge to

a locally optimal solution, let alone a global one.

LO-K-means (Our Algorithm)
▶ A simple modification to the K-means algorithm that ensures local

optimality with no additional complexity.
▶ Analysis of two local-optimality criteria—continuous (C-local) and

discrete (D-local)—shows experimentally that LO-K-means consistently
improves clustering quality.

Introduction

The K-means Clustering. Partition a set of 𝑁 data points 𝑋 = {𝑥𝑖}𝑁𝑖=1 with
weights 𝑊 = {𝑤𝑖}𝑁𝑖=1 into 𝐾 distinct clusters by minimizing the total Bregman
divergence to the cluster centers.
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K-means

The K-means Algorithm (Lloyd, 1982).

1. Select 𝐾 initial centers arbitrarily from 𝑋 .
2. Assign each data point to the cluster with the nearest center.
3. Recalculate the center for each cluster as the mean of its assigned points.
4. Repeat 2 and 3 until cluster assignments no longer change.

Continuous Relaxation. Once an assignment matrix 𝑃 is fixed, the optimal
centers 𝐶 are uniquely determined. Since 𝐹 (𝑃) := min𝐶 𝑓 (𝑃,𝐶) is concave,
relaxing 𝑃 from {0, 1}𝐾×𝑁 to [0, 1]𝐾×𝑁 yields an equivalent continuous K-means
formulation with the same optimal clustering loss.

Common Misconception:
Although K-means is commonly assumed (e.g., in scikit-learn) to converge to
a locally optimal solution, it can fail.

▶ The most-cited proof (Selim & Ismail, 1984) for local optimality has
some flaws.

Counterexample

Initial setup: 𝑁 = 5, 𝐾 = 2, 𝑥 = {−4,−2, 0, 1.5, 2.5},
Initial centers: 𝑐1 = 0, 𝑐2 = 2.5.
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Update assignment

−4 −2 0 1.5 2.5

Update center & Converged to 𝑐∗1 = −2, 𝑐∗2 = 2
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Not a Locally Optimal Solution!
▶ Shifting a small part of point 0 to the other cluster can further reduce the

clustering loss.

Theoretical Guarantees

Two Definitions of Local Optimality:

▶ C-local: (𝑃,𝐶) is a local optimum in the continuous relaxation.
i.e. no 𝑃′ with ∥𝑃′ − 𝑃∥ ≤ 𝜀 such that 𝐹 (𝑃′) < 𝐹 (𝑃).

▶ D-local: (𝑃,𝐶) is a local optimum in hard clustering.
i.e. no 𝑃′ adjacent to 𝑃 such that 𝐹 (𝑃′) < 𝐹 (𝑃).

Key Condition for Local Optimality:

K-means solution (𝑃,𝐶) is C-local.
⇔ The optimal assignment for the solution centers 𝐶 is unique.

▶ If the optimal assignment for centers 𝐶 is not unique, then switching to any
other assignment strictly decreases the clustering loss.

▶ Simply check if any point is at the same distance from two or more centers.

▶ Compute the exact change in loss when moving a single point to another
cluster by a simple explicit formula.

−4 −2 0 1.5 2.5

dist = 2

−4 −2 0 1.5 2.5
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Numerical Experiments

▶ Guarantees convergence to local optimality (both continuous and discrete).
▶ Same per-iteration complexity as the original K-means O(𝑁𝐾𝑑).

Algorithms:
▶ K-means
▶ C-LO (LO-K-means; guarantees C-local optimality)
▶ D-LO (LO-K-means; guarantees D-local optimality)
▶ Min-D-LO (LO-K-means; guarantees D-local and enhances D-LO)

Synthetic Datasets

Figure 1. Proportion of runs where C-LO
outperforms K-means (squared Euclidean;
1,000 trials).

▶ K-means sometimes fails to converge
to a C-local solution.

Real-World Datasets
Table 1. Clustering loss (mean, min), runtime, and iterations for K-means, D-LO, and
Min-D-LO (squared Euclidean; 20 trials) on real datasets.

Dataset Iris (𝑁 = 150, 𝑑 = 4) News20 (𝑁 = 2,000, 𝑑 = 1,089)
𝐾 Algorithm Mean Minimum Time(s) Num Iter Mean Minimum Time(s) Num Iter

10
K-means++ 29.57 26.01 < 0.001 7 697,527 643,583 0.48 23

D-LO++ 28.92 25.94 < 0.001 17 634,216 625,467 6.18 288
Min-D-LO++ 28.93 25.94 < 0.001 17 634,293 625,468 2.55 125

25
K-means++ 13.73 12.70 < 0.001 6 529,028 487,823 1.25 26

D-LO++ 12.58 11.83 < 0.001 31 475,299 468,201 35.96 705
Min-D-LO++ 12.61 12.07 < 0.001 27 474,431 467,745 15.77 316

50
K-means++ 6.40 5.52 < 0.001 5 439,029 418,754 3.02 31

D-LO++ 5.36 5.04 0.002 37 392,016 388,746 157.97 1,228
Min-D-LO++ 5.40 5.04 0.002 30 392,146 388,990 60.41 533

Figure 2. Clustering loss progression per
iteration for K-means, D-LO, and Min-D-LO on
News20 (𝑁 = 2000, 𝑑 = 1089, 𝐾 = 10).

▶ Our methods (D-LO, Min-D-LO) consistently find solutions with lower
clustering losses.

▶ Even with a practical iteration limit (e.g., 300 iterations), our methods still
provide significant accuracy improvements of over 15-25%.


