

Modified K-means Algorithm with Local Optimality Guarantees

Mingyi Li¹ Michael R. Metel² Akiko Takeda^{1,3}

¹The University of Tokyo ²Huawei Noah's Ark Lab ³RIKEN AIP

Summary & Contribution

- ► K-means is a classic, widely used clustering algorithm.
- ► We show by counterexample that K-means does not necessarily converge to a locally optimal solution, let alone a global one.

LO-K-means (Our Algorithm)

- ► A simple modification to the K-means algorithm that ensures local optimality with no additional complexity.
- ► Analysis of two local-optimality criteria—continuous (C-local) and discrete (D-local)—shows experimentally that LO-K-means consistently improves clustering quality.

Introduction

The K-means Clustering. Partition a set of N data points $X = \{x_i\}_{i=1}^N$ with weights $W = \{w_i\}_{i=1}^N$ into K distinct clusters by minimizing the total Bregman divergence to the cluster centers.

$$\min_{P,C} f(P,C) = \sum_{k=1}^{K} \sum_{n=1}^{N} p_{k,n} w_n D(x_n, c_k)$$

The K-means Algorithm (Lloyd, 1982).

- 1. Select *K* initial centers arbitrarily from *X*.
- 2. Assign each data point to the cluster with the nearest center.
- 3. Recalculate the center for each cluster as the mean of its assigned points.
- 4. Repeat 2 and 3 until cluster assignments no longer change.

Continuous Relaxation. Once an assignment matrix P is fixed, the optimal centers C are uniquely determined. Since $F(P) := \min_C f(P, C)$ is concave, relaxing P from $\{0, 1\}^{K \times N}$ to $[0, 1]^{K \times N}$ yields an equivalent continuous K-means formulation with the same optimal clustering loss.

Common Misconception:

Although K-means is commonly assumed (e.g., in scikit-learn) to converge to a locally optimal solution, it can fail.

► The most-cited proof (Selim & Ismail, 1984) for local optimality has some flaws.

Counterexample

Initial setup: N = 5, K = 2, $x = \{-4, -2, 0, 1.5, 2.5\}$, Initial centers: $c_1 = 0$, $c_2 = 2.5$.

Update assignment

Update center & Converged to $c_1^* = -2$, $c_2^* = 2$

Not a Locally Optimal Solution!

> Shifting a small part of point 0 to the other cluster can further reduce the clustering loss.

Theoretical Guarantees

Two Definitions of Local Optimality:

- ▶ **C-local:** (P, C) is a local optimum in the continuous relaxation. *i.e.* no P' with $||P' P|| \le \varepsilon$ such that F(P') < F(P).
- ▶ **D-local:** (P, C) is a local optimum in hard clustering. *i.e.* no P' adjacent to P such that F(P') < F(P).

Key Condition for Local Optimality:

K-means solution (P, C) is C-local.

- \Leftrightarrow The optimal assignment for the solution centers C is **unique**.
- ► If the optimal assignment for centers *C* is not unique, then switching to any other assignment strictly decreases the clustering loss.
- ► Simply check if any point is at the same distance from two or more centers.
- ► Compute the exact change in loss when moving a single point to another cluster by a simple explicit formula.

Numerical Experiments

- ► Guarantees convergence to local optimality (both continuous and discrete).
- ▶ Same per-iteration complexity as the original K-means O(NKd).

Algorithms:

- K-means
- ► C-LO (LO-K-means; guarantees C-local optimality)
- ▶ **D-LO** (LO-K-means; guarantees D-local optimality)
- ► Min-D-LO (LO-K-means; guarantees D-local and enhances D-LO)

Synthetic Datasets

Figure 1. Proportion of runs where C-LO outperforms K-means (squared Euclidean; 1,000 trials).

► K-means sometimes fails to converge to a C-local solution.

■ Real-World Datasets

Table 1. Clustering loss (mean, min), runtime, and iterations for K-means, D-LO, and Min-D-LO (squared Euclidean; 20 trials) on real datasets.

	Dataset	Iris $(N = 150, d = 4)$				News20 ($N = 2,000, d = 1,089$)			
K	Algorithm	Mean	Minimum	Time(s)	Num Iter	Mean	Minimum	Time(s)	Num Iter
	K-means++	29.57	26.01	< 0.001	7	697,527	643,583	0.48	23
10	D-LO++	28.92	25.94	< 0.001	17	634,216	625,467	6.18	288
	Min-D-LO++	28.93	25.94	< 0.001	17	634,293	625,468	2.55	125
	K-means++	13.73	12.70	< 0.001	6	529,028	487,823	1.25	26
25	D-LO++	12.58	11.83	< 0.001	31	475,299	468,201	35.96	705
	Min-D-LO++	12.61	12.07	< 0.001	27	474,431	467,745	15.77	316
	K-means++	6.40	5.52	< 0.001	5	439,029	418,754	3.02	31
50	D-LO++	5.36	5.04	0.002	37	392,016	388,746	157.97	1,228
	Min-D-LO++	5.40	5.04	0.002	30	392,146	388,990	60.41	533

Figure 2. Clustering loss progression per iteration for K-means, D-LO, and Min-D-LO on News20 (N = 2000, d = 1089, K = 10).

- ► Our methods (D-LO, Min-D-LO) consistently find solutions with lower clustering losses.
- ► Even with a practical iteration limit (e.g., 300 iterations), our methods still provide significant accuracy improvements of over 15-25%.