

DCTdiff: Intriguing Properties of Image Generative Modeling in the DCT Space

Mang Ning, Mingxiao Li*, Jianlin Su*, Haozhe Jia, Lanmiao Liu, Wenshuo Chen, Martin Beneš, Albert Ali Salah, Itir Onal Ertugrul

Motivation

Image modeling in the RGB space vs. images are stored in a compressed form (DCT, DEFLATE)

High resolution (≥256x256) image generation relies on Latent Diffusion (SD3, Flux, Imagen3, DALLE-3)

Can we perform image modeling in a (near) lossless compression space ? → DCT space

Architecture of DCTdiff

Results (faster & better)

Low-resolution (from 32x32 to 128x128)

NFE	Model	Euler ODE solver (DDIM sampler)			DPM-Solver				
1112	1110001	CIFAR-10	CelebA 64	ImageNet 64	FFHQ 128	CIFAR-10	CelebA 64	ImageNet 64	FFHQ 128
100	UViT DCTdiff	6.23 5.02	1.99 1.91	10.65 8.69	13.87 8.22	5.80 5.28	1.57 1.71	10.07 9.73	9.18 6.25
50	UViT DCTdiff	7.88 5.21	3.50 2.24	15.05 8.70	26.26 9.99	5.82 5.30	1.58 1.72	10.09 9.78	9.20 6.28
20	UViT DCTdiff	21.48 6.81	31.09 3.84	52.10 21.88	87.68 24.88	6.19 5.54	1.73 1.84	10.25 9.85	9.21 7.29
10	UViT DCTdiff	81.67 12.45	224.21 67.78	166.63 129.93	209.69 161.05	26.65 9.10	4.37 5.29	13.27 12.38	14.26 12.87

High-resolution (256x256, 512x512)

NFE	Model	Dataset				
1,12	1110001	FFHQ 256 FFHQ 512		AFHQ 512		
100	UViT (latent) DCTdiff	4.26 5.08	10.89 7.07	10.86 8.76		
50	UViT (latent) DCTdiff	4.29 5.18	10.94 7.09	10.86 8.87		
20	UViT (latent) DCTdiff	4.74 6.35	11.31 8.04	11.94 10.05		
10	UViT (latent) DCTdiff	13.29 12.05	23.61 19.67	28.31 21.05		

Less training cost

Dataset	Model	# Parameters	GFLOPs	Training	steps
CelebA 64	UViT DCTdiff	44M 44M	11 11	400k 250k	
FFHQ 128	UViT DCTdiff	44M 44M	11 11	750k 300k	
FFHQ 256	UViT (latent) DCTdiff	131M + 84M 131M	169 133	200k 300k	
AFHQ 512	UViT (latent) DCTdiff	131M + 84M 131M	575 133	225k 225k	23% cost

Property: Frequency Prioritization

Generative tasks:

- RGB: which pixel is more important than another pixel?
- DCT: low-frequency signal contributes more to the image quality than a high-frequency signal

$$\mathbb{E}_t \lambda(t) \mathbb{E}_{\overline{\mathbf{x}}_0, \overline{\mathbf{x}}_t} [\boldsymbol{H}(B) || \boldsymbol{s}_{\boldsymbol{\theta}}(\overline{\mathbf{x}}_t, t) - \nabla_{\overline{\mathbf{x}}_t} \log P_{0t}(\overline{\mathbf{x}}_t | \overline{\mathbf{x}}_0) ||_2^2]$$
reweigting

Discriminative tasks

- DCT:
 - High frequencies (medical image analysis, forgery detection)
 - Low frequencies (scene recognition, action recognition)

Property: Significant Compression

Generative tasks

- DCT enables flexible and domain-agnostic compression
- rFID = 0.5 as near lossless compression
- 4x compression on 256*256
- 7x compression on 512*512

Dataset	Block size	m	rFID	Compression ratio
FFHQ 256×256	4	7 8 9	0.19 0.49 0.96	3.56 4.00 4.57
FFHQ 512×512	8	44 46 48	0.23 0.48 1.18	6.40 7.11 8.00

Discriminative tasks

• Higher compression is possible

NFE	Model	Dataset				
	1110001	FFHQ 512	AFHQ 512			
100	UViT (latent)	10.89	10.86			
	DCTdiff	7.07	8.76			
50	UViT (latent)	10.94	10.86			
	DCTdiff	7.09	8.87			
20	UViT (latent)	11.31	11.94			
	DCTdiff	8.04	10.05			
10	UViT (latent)	23.61	28.31			
	DCTdiff	19.67	21.05			

Property: Image Diffusion Is Spectral Autoregression

We provide a formal proof:

Theorem 5.1. Consider a diffusion model described by $d\mathbf{x}_t = \mathbf{f}(\mathbf{x}_t, t)dt + g(t)d\mathbf{w}_t$. Let ω denote the frequency, $\hat{\boldsymbol{x}}_0(\omega)$ and $\hat{\boldsymbol{x}}_t(\omega)$ represent the Fourier transform of the pixel image x_0 and x_t , respectively. The averaged power spectral density of the noisy image x_t satisfies:

$$\mathbb{E}\left[\left|\hat{\boldsymbol{x}}_{t}(\omega)\right|^{2}\right] = \left|\hat{\boldsymbol{x}}_{0}(\omega)\right|^{2} + \int_{0}^{t} |g(s)|^{2} ds \qquad (11)$$

in which $|\hat{\boldsymbol{x}}_0(\omega)|^2$ is the power spectral density of the image \mathbf{x}_0 and natural images have the power-law: $|\hat{\mathbf{x}}_0(\omega)|^2 =$ $K|\omega|^{-\alpha}$ (Ruderman, 1997)(K and α are constants). Meanwhile, $\int_0^t |g(s)|^2 ds$ is independent of frequency ω and appears as a horizontal line in the spectral density graph.

Takeaways

- Image modeling in the DCT space is efficient (512x512 generation without VAE)
- DCT space is underexplored, and has promising directions
 - Spectral bias in NN
 - Image → Video
 - Representation learning (MIM)
 - Network architecture (MoE)

Samples generated by DCTdiff trained on AFHQ 512×512