(Long-) Context Modeling and Beyond

Zecheng Tang

OpenNLG Lab, SUDA

ICML 2025

Background

Context Modeling is the task of modeling the probability distribution of sequences

General format of sequence modeling with **Neural ODE Function**

$$\begin{cases} \frac{dh(t)}{dt} = f(h(t), t) \\ h(t) = h(t_0) + \int_{t_0}^{t_1} f(h(t), t, \theta) dt \end{cases} \Rightarrow p(x) = \int p(h_0) p(x|h(t; h_0)) dh_0$$
Joint probability distribution

Discrete State Modeling

Autoregressive Context Modeling

$$P(x_{1:T}) = \prod_{t=1}^{T} p(x_t|x_{1:t-1})$$

$$P(x_{1:T}|z) = \prod_{t=1}^{T} p(x_t|z)$$

Non-autoregressive Context Modeling

$$P(x_{1:T}|z) = \prod_{t=1}^{I} p(x_t|z)$$

 $P(x_{1:T})$ contains semantics and structure information of discrete sequence

Context modeling is a fundamental capability of (Large) Language Models

Long-context Models are essential for AI development

Important scenarios in our daily life

- ➤ Book and document analysis
- Web content reading
- Code bases writing
- ➤ High-res images
- ➤ Audio recordings and Videos
- **>** ...

Some breakthrough moments in the AI field

- > RL / Long-Cot
- Video Generation (World Model)
- Personal Agent
- ChatGPT moments (MCP, Model Context Protocol)
- **>** ...

Claimed **Effective** Models 4K8K16K 32K 64K 128K Avg. Length Length Llama2 (7B) 4K 85.6 Gemini-1.5-Pro 95.9 93.2 95.8 1M > 128K<u>96.7</u> <u>95.8</u> <u>96.0</u> <u>95.9</u> <u>94.4</u> 128K 96.6 96.3 <u>95.2</u> 87.0 81.2 GPT-4 64K 91.6 95.4 94.9 94.2 94.8 94.1 92.0 Llama3.1 (70B) 128K 64K <u>96.5</u> <u>95.8</u> 88.4 66.6 89.6 96.9 96.1 Qwen2 (72B) 128K 32K 79.8 53.7 85.9 95.2 Command-R-plus (104B) 128K 32K <u>95.6</u> 84.3 63.1 87.4 94.7 95.5 92.1 91.6 89.9 87.4 92.8 83.1 GLM4 (9B) 1M 64K <u>86.7</u> 89.9 93.8 Llama3.1 (8B) 128K 32K 84.7 77.0 88.3 90.8 85.4 GradientAI/Llama3 (70B) 95.1 94.4 1M 16K 80.9 72.1 86.5 90.9 87.5 95.6 94.9 93.4 Mixtral-8x22B (39B/141B) 64K 32K 84.7 31.7 81.9 91.3 93.3 92.2 Yi (34B) 200K 32K 83.2 77.3 87.5 93.2 91.1 93.3 86.8 Phi3-medium (14B) 128K 32K 78.6 46.1 81.5 93.6 91.2 87.2 75.4 Mistral-v0.2 (7B) 32K 16K 49.0 13.8 68.4 LWM (7B) 1M < 4K82.3 78.4 73.7 69.1 68.1 65.0 72.8 DBRX (36B/132B) 32K 8K <u>95.1</u> 93.8 83.6 63.1 2.4 56.3 0.0 Together (7B) 32K 4K 88.2 81.1 69.4 63.0 0.0 0.0 50.3 84.7 79.9 70.8 59.3 LongChat (7B) 32K <4K0.0 0.0 49.1 LongAlpaca (13B) 32K <4K 60.6 57.0 56.6 43.6 0.0 0.0 36.3

But,

Yes,

Background:

Long-context Modeling

Phenomena: Lost In the Middle of LLMs [Liu N. F. et al., 2023]

- Information occurs at the very start or end of the context: *Highest*
- ➤ Information in the middle: *Rapidly Degrade*

Theory I: Retrieval Head Explains Long-Context Factuality [Wu. et al, 2024]

Retrieval Score Measure how often a head performs copy-paste from the input (needle) to the output

- During decoding:
 - Let w be the token being generated
 - Let $a \in R^{|x|}$ be the attention scores for a head
- > A head is considered to copy-paste w if
 - $w \in k \rightarrow w$ is in the needle sentence
 - $x_j = w, j = \operatorname{argmax}(a), j \in i \rightarrow \text{the most attended input token matches } w$ and is from the needle
- Retrieval Score $|g_h| \rightarrow \text{set of tokens copied by head h}$ $h = \frac{|g_h \cap k|}{|k|}$

Theory I: Retrieval Head Mechanistically Explains Long-Context Factuality

Retrieval heads are universal and sparse across model family and scale.

➤ less than 5% of the attention heads are activated more than 50% of the time (with a retrieval score higher than 0.5) when retrieval is required

Most retrieval heads are concentrated in the upper-middle layers

- > Sparse distribution
- ➤ Lower layers focus on local feature extraction
- ➤ Upper layers perform information aggregation

AF: Activation Frequency RS: Retrieval Score

- ➤ Head of high AF and RS → Retrieval Head
- ➤ Head of high AF but low RS → Bias Head: Activated on certain tokens
- ➤ Head of low AF and RS → Useless Head (can be pruned for compression)

- Masking out the top retrieval heads, performance drops significantly, and the model hallucinates during decoding.
- Masking out random non-retrieval heads does not influence the model's retrieval behavior.

- ➤ Incomplete Retrieval: The retrieval heads fail to capture partial information (e.g., "eat a sandwich").
- ➤ Hallucination: The retrieval heads incorrectly attend to initial tokens (attention sink).

Theory II: Three Attention Patterns Exist in LLMs

Minference 1.0 [Jiang et al. 2024] summaries three attention patterns in LLMs

> A-Shape Pattern

- Focus on initial tokens and local windows
- Exhibits relatively **higher stability** compared to other patterns.

Vertical-Slash (VS) Pattern

- Specific tokens (vertical lines)
- Fixed-interval tokens (slash lines).

Block-Sparse Pattern

- **Dynamic and dispersed** distribution.
- Spatial clustering (concentrate near top-K neighbors).

Apply Attention Patterns For Better (Long-)context Modeling

StreamingLLM [Xiao et al., 2023]

- Attention Sink: Retains initial tokens (as "sinks") to stabilize attention computation.
- Recent Tokens: Combines sinks with the most recent tokens for efficient context processing.
- > Computationally efficient for streaming/extended text generation.

Issue: Imbalanced Modeling and Generation

- Precise information retrieval
- Deficient generation capability

Issue 1: Imbalanced Context Modeling and Generation

- ➤ Good retrieval capability and low "PPL" score
- Poor downstream task performance, e.g., reasoning

Modeling Approach: Preference-Optimized Context Modeling

LOGO -- Long cOntext aliGnment via efficient preference Optimization [Tang et al., 2024]

$$\mathcal{L}_{\text{LOGO}}(\pi_{\theta}) = -\mathbb{E}_{(x, y_w, y_l^{(1 \cdots M)})} \left[\log \sigma \left(\frac{\beta}{|y_w|} \log \pi_{\theta}(y_w | x) - \frac{\beta}{M |y_l|} \sum_{j=1}^{M} \log \pi_{\theta}(y_l^{(j)} | x) - \gamma \right) \right]$$
Win Response
Lose Response

Motivation: activate the model's capability to *effectively utilize captured critical information for prediction* through preference optimization.

- Challenge 1: Hard to distinguish win and lose respond
- Challenge 2: Expensive to train with long-context RL

Observation I: Model response varies with the density of critical information

→ High Information-Density Contexts

- Responses exhibit high correctness probability
- (Model effectively leverages concentrated key information)

Low Information-Density Contexts

- Responses show lower correctness probability
- (Performance degrades due to sparse/noisy signal)

Method: Synthesizing preference pairs with reverse generation

Stage 1: Context Filtering

- Locate salient chunks with Entity Overlap Score
- > Stage 2: Reverse Generation
 - Generate response based on filtered context
 - ✓ Win response: All salient chunks
 - ✓ Lose response: Partial / No salient chunks

Observation II: Scaling Rejection Perception Field

Beter performance with larger rejection perception field

$$\mathcal{L}_{\text{LOGO}}(\pi_{\theta}) = -\mathbb{E}_{(x,y_w,y_l^{(1\cdots M)})} \left[\log \sigma \left(\frac{\beta}{|y_w|} \log \pi_{\theta}(y_w|x) - \frac{\beta}{M|y_l|} \sum_{j=1}^{M} \log \pi_{\theta}(y_l^{(j)}|x) - \gamma \right) \right]$$
Win Response
Scaled Lose Response

Method: Positional Index Synthesis can relieve the training burden

Context Sparse → Positional Index Sparse

A-Shape Pattern + Vertical-Slash (VS) Pattern

Method: Positional Index Synthesis can relieve the training burden

Context Sparse → Positional Index Sparse

A-Shape Pattern + Block-Sparse Pattern

Result I: 8B model achieves comparable results with GPT-4

Result I: LOGO can generalize to all Long-context training settings

Models	Type	S-Doc QA	M-Doc QA	Summ	Few-shot	Synthetic	Avg.
GPT-3.5-Turbo-16K	-	39.8	38.7	26.5	67.1	37.8	42.0
GPT-4	-	45.1	55.0	28.3	72.3	41.8	48.5
LongChat-v1.5-7B-32k	-	28.7	20.6	26.7	60.0	15.8	30.4
LLama-3.1-8B-Instruct-128K	-	23.9	15.8	28.9	69.8	57.5	39.2
Result	s on SC	Ms (scaling ×	8 context wind	low)			
Llama-3-8B-Instruct-8K	-	39.3	36.2	24.8	63.5	39.9	40.7
+ YaRN-64K (Peng et al., 2023b)	Free	38.0	36.6	27.4	61.7	40.9	40.9
+ PoSE-64K (Zhu et al., 2023)	SFT	34.9	31.4	18.7	59.3	44.2	37.7
+ LOGO-64K	DPO	39.8	36.7	28.8	65.4	49.0	43.9
Llama-2-7B-Chat-4K	-	24.9	22.6	24.7	60.0	5.9	27.6
+ Data-Engineering-80K (Fu et al., 2024)	SFT	26.9	23.8	21.3	65.0	7.9	29.0
+ LOGO-32K	DPO	26.7	23.3	26.3	63.1	11.1	30.1
Results on	LCMs	(preserving or	riginal context v	window)			
Llama-3-8B-Instruct-80K	-	43.0	39.8	22.2	64.3	46.3	42.3
+ LongLoRA (Chen et al., 2023b)	SFT	39.3	36.2	26.8	63.5	48.0	42.8
+ SimPO (Meng et al., 2024)	DPO	43.2	40.7	23.5	66.7	48.4	44.5
+ LOGO-80K	DPO	44.0	41.2	28.1	68.6	53.0	47.0
Llama-2-7B-64K	-	28.3	33.2	13.4	62.3	6.1	28.7
+ Long Align (Bai et al., 2024)	SFT	29.9	32.7	26.5	63.8	16.5	33.9
+ LOGO-64K	DPO	33.6	28.0	29.4	65.1	24.5	36.1
Mistral-Instruct-7B-V0.2-32K	-	31.7	30.6	16.7	58.4	17.9	31.1
+ FILM-32K (An et al., 2024)	SFT	37.9	34.9	25.3	64.7	31.2	38.8
+ LOGO-32K	DPO	38.3	37.6	26.1	67.0	31.5	40.1

Result II: Preserve performance on short-context tasks

Result III: Stress testing on long-context synthesis tasks

Pass all NIAH testing from 8K → 96K context length