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Background: Tendency of Modern MoE-based LLMs

Coarse-Grained MoE
(Small amount of global & 

activated experts)

Fine-Grained MoE
(Large amount of global & 

activated experts)



Background: Expert Parallelism for Mixture-of-Experts



Overview: Optimizing All-to-All Communication Volume

Core Insights:
- Only send one replica for a 

token when more than one 
of its activated experts are 
kept on a device.

- Optimize all-to-all 
communication volume with 
algorithm-system co-design



Methodology: Expert Collaboration for Specialized Layout
Formulate the all-to-all communication as collaborative communication. 
For 2 experts co-activated by a token:

- Inter-Collaboration: 2 experts are kept on different devices.
- Intra-Collaboration: 2 experts are kept on the same device.

Maximizing intra-collaboration & minimizing inter-collaboration:
- Fully utilize each token replica
- Reduce all-to-all communication volume

Profiling on wikitext to determine the specialized expert layout
- Run the prefilling stage to obtain the routing information
- Construct a collaboration graph for each MoE layer
- Build expert layout through graph partition



Methodology: Sparse MatMul & 2-Stage Top-k Reducing



Methodology: Routing with Collaboration Pruning

Standard routing algorithm cannot achieve ultimate communication efficiency.
Modify the routing choice of each token, 
Making it fall into a limited number of devices:

- Keeping the scores of the top-k experts
- Replacing the selected experts with low scores

- Scheme-1: Replace them using candidates with higher routing score
- Scheme-2: Replace them using candidates with higher expert similarity



Experiments Setup

Model Total Params Activated Params Top-k # Routed Experts # Layers

OLMoE-1B-7B 7B 1B 8 64 16

Qwen1.5-MoE-A2.7B 14B 2.7B 4 60 27

DeepSeek-MoE 16B 2.8B 6 64 24

Datasets:
- Using Alpaca for collaboration pruning

Hardware:
- PCIe-connected NVIDIA A6000 (48 GB) GPUs



Results: Reducing Wall-Clock Latency for Training



Results: Reducing Wall-Clock Latency for Inference



Results: Comparable Performance with Standard Tuning



Thank you!


