

Sliding Puzzles Gym: A Scalable Benchmark for State Representation in Visual RL

Bryan L. M. de Oliveira^{1,2}, Luana G. B. Martins¹, Bruno Brandão^{1,2}, Murilo L. da Luz^{1,2}, Telma W. de L. Soares^{1,2}, Luckeciano C. Melo^{1,3}

ICML 2025

¹Advanced Knowledge Center for Immersive Technologies (AKCIT) ²Institute of Informatics, Federal University of Goiás ³OATML, University of Oxford

Correspondence to: bryanlincoln@discente.ufg.br Code: https://github.com/bryanoliveira/sliding-puzzles-gym

Targeted Visual RL Evaluation

 The Challenge: How do we measure an RL agent's ability to see and understand visual content, separate from other skills?

Targeted Visual RL Evaluation

- The Challenge: How do we measure an RL agent's ability to see and understand visual content, separate from other skills?
 - Existing benchmarks (e.g., Atari, ProcGen, DM Control) are great, but they
 mix different challenges together: representation learning, policy learning,
 dynamics learning.

Targeted Visual RL Evaluation

- The Challenge: How do we measure an RL agent's ability to see and understand visual content, separate from other skills?
 - Existing benchmarks (e.g., Atari, ProcGen, DM Control) are great, but they mix different challenges together: representation learning, policy learning, dynamics learning.
- The Gap: There's no systematic way to isolate and scale only the visual representation challenge.

5 2

734

861

State

 Our Solution: Isolate the visual challenge using the classic 8-puzzle.

5 2

734

861

State

- Our Solution: Isolate the visual challenge using the classic 8-puzzle.
 - Tiles are patches from an image.

5 2 7 3 4 8 6 1

Image Overlay

- Our Solution: Isolate the visual challenge using the classic 8-puzzle.
 - Tiles are patches from an image.
 - The task is always the same.

Goal State

- Our Solution: Isolate the visual challenge using the classic 8-puzzle.
 - Tiles are patches from an image.
 - The task is always the same.
 - Visual diversity is controlled by increasing the pool of images.

 At run start: Sample images from the dataset to form an image pool.

- At run start: Sample images from the dataset to form an image pool.
- At episode start: Sample an image from the pool and split it into indexed patches.

- At run start: Sample images from the dataset to form an image pool.
- At episode start: Sample an image from the pool and split it into indexed patches.
- Overlay patches onto the puzzle state.

- At run start: Sample images from the dataset to form an image pool.
- At episode start: Sample an image from the pool and split it into indexed patches.
- Overlay patches onto the puzzle state.

- At run start: Sample images from the dataset to form an image pool.
- At episode start: Sample an image from the pool and split it into indexed patches.
- Overlay patches onto the puzzle state.
- Visual complexity controls:
 Image pool and grid sizes.

Goal: measure how modern RL agents handle increasing visual diversity.

- Goal: measure how modern RL agents handle increasing visual diversity.
- Environment: 3x3 grids with images from ImageNet.

- Goal: measure how modern RL agents handle increasing visual diversity.
- Environment: 3x3 grids with images from ImageNet.
- Independent Variable: Images in the training pool (from 1 up to 100).

- Goal: measure how modern RL agents handle increasing visual diversity.
- Environment: 3x3 grids with images from ImageNet.
- Independent Variable: Images in the training pool (from 1 up to 100).
- Algorithms: PPO, SAC and DreamerV3 with multiple variants.

- Goal: measure how modern RL agents handle increasing visual diversity.
- Environment: 3x3 grids with images from ImageNet.
- Independent Variable: Images in the training pool (from 1 up to 100).
- Algorithms: PPO, SAC and DreamerV3 with multiple variants.
- Primary Metric: Sample Efficiency (steps to 80% success rate).

Results: Performance & Scaling

Results: Performance & Scaling

All agents take longer to learn as the image pool grows.

Results: Performance & Scaling

- All agents take longer to learn as the image pool grows.
- DreamerV3 is the most robust, likely due to its world model.

Table 1. Million steps to reach 80% success rate across pool sizes. Lower is better. Best performing variant for each algorithm and pool size is highlighted in bold.

Agent	Pool 1	Pool 5	Pool 10
PPO	1.75±0.44	7.80±1.08	9.73±0.36
PPO + PT (ID)	0.95 ± 0.21	5.55 ± 1.22	9.17±1.10
PPO + PT (OOD)	1.34 ± 0.42	7.03 ± 1.07	9.70 ± 0.41
SAC	0.33±0.07	0.91±0.12	2.03±0.38
SAC + RAD	0.24 ± 0.03	$0.42{\scriptstyle\pm0.06}$	0.82 ± 0.18
SAC + CURL	0.46 ± 0.10	1.56 ± 0.31	5.24 ± 1.92
SAC + SPR	2.09 ± 0.81	3.68 ± 1.68	10.00 ± 0.00
SAC + DBC	0.99 ± 0.25	1.12 ± 0.22	2.13 ± 0.41
SAC + AE	1.04 ± 0.24	1.02 ± 0.19	2.01 ± 0.38
SAC + VAE	1.13 ± 0.14	5.30 ± 0.68	10.00 ± 0.00
SAC + SB	0.98 ± 0.88	2.08 ± 0.30	10.00 ± 0.00
DreamerV3	0.42±0.06	1.23±0.20	1.44±0.58
DreamerV3w/o dec.	1.13±0.12	1.79±0.61	2.57±0.91

Pretraining ID & OOD improves PPO performance.

Table 1. Million steps to reach 80% success rate across pool sizes. Lower is better. Best performing variant for each algorithm and pool size is highlighted in bold.

Agent	Pool 1	Pool 5	Pool 10
PPO	1.75±0.44	7.80±1.08	9.73±0.36
PPO + PT (ID)	0.95 ± 0.21	5.55±1.22	9.17±1.10
PPO + PT (OOD)	1.34±0.42	7.03 ± 1.07	9.70±0.41
SAC	0.33±0.07	0.91±0.12	2.03±0.38
SAC + RAD	0.24 ± 0.03	0.42 ± 0.06	0.82 ± 0.18
SAC + CURL	0.46 ± 0.10	1.56±0.31	5.24 ± 1.92
SAC + SPR	2.09 ± 0.81	3.68±1.68	10.00 ± 0.00
SAC + DBC	0.99 ± 0.25	1.12 ± 0.22	2.13±0.41
SAC + AE	1.04 ± 0.24	1.02 ± 0.19	2.01 ± 0.38
SAC + VAE	1.13 ± 0.14	5.30 ± 0.68	10.00 ± 0.00
SAC + SB	0.98 ± 0.88	2.08 ± 0.30	10.00 ± 0.00
DreamerV3	0.42±0.06	1.23±0.20	1.44±0.58
DreamerV3w/o dec.	1.13±0.12	1.79 ± 0.61	2.57 ± 0.91

- Pretraining ID & OOD improves
 PPO performance.
- **Decoding** helps DreamerV3.

Table 1. Million steps to reach 80% success rate across pool sizes. Lower is better. Best performing variant for each algorithm and pool size is highlighted in bold.

Agent	Pool 1	Pool 5	Pool 10
PPO	1.75±0.44	7.80±1.08	9.73±0.36
PPO + PT (ID)	0.95 ± 0.21	5.55 ± 1.22	9.17±1.10
PPO + PT (OOD)	1.34 ± 0.42	7.03 ± 1.07	9.70 ± 0.41
SAC	0.33±0.07	0.91±0.12	2.03±0.38
SAC + RAD	0.24 ± 0.03	$0.42 {\pm} 0.06$	0.82 ± 0.18
SAC + CURL	0.46 ± 0.10	1.56 ± 0.31	5.24 ± 1.92
SAC + SPR	2.09 ± 0.81	3.68±1.68	10.00 ± 0.00
SAC + DBC	0.99 ± 0.25	1.12 ± 0.22	2.13 ± 0.41
SAC + AE	1.04 ± 0.24	1.02 ± 0.19	2.01 ± 0.38
SAC + VAE	1.13 ± 0.14	5.30 ± 0.68	10.00 ± 0.00
SAC + SB	0.98 ± 0.88	2.08±0.30	10.00±0.00
DreamerV3	0.42±0.06	1.23±0.20	1.44±0.58
DreamerV3w/o dec.	1.13±0.12	1.79±0.61	2.57±0.91

- Pretraining ID & OOD improves
 PPO performance.
- **Decoding** helps DreamerV3.
- SAC with **Data Augmentation** (RAD) is highly effective.

Table 1. Million steps to reach 80% success rate across pool sizes. Lower is better. Best performing variant for each algorithm and pool size is highlighted in bold.

Agent	Pool 1	Pool 5	Pool 10
PPO	1.75±0.44	7.80±1.08	9.73±0.36
PPO + PT (ID)	0.95 ± 0.21	5.55 ± 1.22	9.17±1.10
PPO + PT (OOD)	1.34±0.42	7.03 ± 1.07	9.70±0.41
SAC	0.33 ± 0.07	0.91±0.12	2.03±0.38
SAC + RAD	0.24 ± 0.03	0.42 ± 0.06	0.82 ± 0.18
SAC + CURL	0.46 ± 0.10	1.56±0.31	5.24±1.92
SAC + SPR	2.09 ± 0.81	3.68±1.68	10.00 ± 0.00
SAC + DBC	0.99 ± 0.25	1.12 ± 0.22	2.13 ± 0.41
SAC + AE	1.04 ± 0.24	1.02 ± 0.19	2.01 ± 0.38
SAC + VAE	1.13 ± 0.14	5.30 ± 0.68	10.00 ± 0.00
SAC + SB	0.98 ± 0.88	2.08 ± 0.30	10.00 ± 0.00
DreamerV3	0.42±0.06	1.23±0.20	1.44±0.58
DreamerV3w/o dec.	1.13±0.12	1.79±0.61	2.57 ± 0.91

- Pretraining ID & OOD improves
 PPO performance.
- Decoding helps DreamerV3.
- SAC with Data Augmentation (RAD) is highly effective.
- Auxiliary methods
 underperform baselines. Their
 assumptions don't seem to hold
 in SPGym.

Table 1. Million steps to reach 80% success rate across pool sizes. Lower is better. Best performing variant for each algorithm and pool size is highlighted in bold.

Agent	Pool 1	Pool 5	Pool 10
PPO	1.75±0.44	7.80±1.08	9.73±0.36
PPO + PT (ID)	0.95 ± 0.21	5.55 ± 1.22	9.17±1.10
PPO + PT (OOD)	1.34 ± 0.42	7.03 ± 1.07	9.70±0.41
SAC	0.33 ± 0.07	0.91±0.12	2.03±0.38
SAC + RAD	0.24 ± 0.03	$0.42 {\pm} 0.06$	0.82 ± 0.18
SAC + CURL	0.46 ± 0.10	1.56 ± 0.31	5.24±1.92
SAC + SPR	2.09 ± 0.81	3.68±1.68	10.00±0.00
SAC + DBC	0.99 ± 0.25	1.12 ± 0.22	2.13±0.41
SAC + AE	1.04 ± 0.24	1.02 ± 0.19	2.01±0.38
SAC + VAE	1.13 ± 0.14	5.30 ± 0.68	10.00±0.00
SAC + SB	0.98 ± 0.88	2.08 ± 0.30	10.00±0.00
DreamerV3	0.42 ± 0.06	1.23 ± 0.20	1.44±0.58
DreamerV3w/o dec.	1.13±0.12	1.79±0.61	2.57±0.91

SPGym is a new benchmark that **isolates the visual representation challenge** from the environment dynamics, rewards, state and action spaces.

SPGym is a new benchmark that **isolates the visual representation challenge** from the environment dynamics, rewards, state and action spaces.

 Sophisticated representation learning techniques struggle with SPGym's unique characteristics.

SPGym is a new benchmark that **isolates the visual representation challenge** from the environment dynamics, rewards, state and action spaces.

- Sophisticated representation learning techniques struggle with SPGym's unique characteristics.
- Agents seem to memorize specific visual features rather than understand the underlying task structure.

SPGym is a new benchmark that **isolates the visual representation challenge** from the environment dynamics, rewards, state and action spaces.

- Sophisticated representation learning techniques struggle with SPGym's unique characteristics.
- Agents seem to memorize specific visual features rather than understand the underlying task structure.
- Simply increasing the **diversity of training data is not enough** to bridge this gap with current algorithms.

Thank You!

Bryan de Oliveira^{1,2}, Luana G. B. Martins¹, Bruno Brandão^{1,2}, Murilo L. da Luz^{1,2}, Telma W. de L. Soares^{1,2}, Luckeciano C. Melo^{1,3}

¹Advanced Knowledge Center for Immersive Technologies (AKCIT) ²Institute of Informatics, Federal University of Goiás ³OATML, University of Oxford

Correspondence to: bryanlincoln@discente.ufg.br Code: https://github.com/bryanoliveira/sliding-puzzles-gym