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Targeted Visual RL Evaluation

● The Challenge: How do we measure an RL agent's ability to see and 
understand visual content, separate from other skills?

○ Existing benchmarks (e.g., Atari, ProcGen, DM Control) are great, but they 
mix different challenges together: representation learning, policy learning, 
dynamics learning.

● The Gap: There's no systematic way to isolate and scale only the visual 
representation challenge.
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● Our Solution: Isolate the visual 
challenge using the classic 8-puzzle.
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● Our Solution: Isolate the visual 
challenge using the classic 8-puzzle.

○ Tiles are patches from an image.

○ The task is always the same.

○ Visual diversity is controlled by 
increasing the pool of images.
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● At run start: Sample images 
from the dataset to form an 
image pool.

● At episode start: Sample an 
image from the pool and 
split it into indexed 
patches.

● Overlay patches onto the 
puzzle state.

● Visual complexity controls: 
Image pool and grid sizes.

Method Overview
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Experimental Setup

● Goal: measure how modern RL agents handle increasing visual 
diversity.

● Environment: 3x3 grids with images from ImageNet.

● Independent Variable: Images in the training pool (from 1 up to 100).

● Algorithms: PPO, SAC and DreamerV3 with multiple variants.

● Primary Metric: Sample Efficiency (steps to 80% success rate).
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Results: Performance & Scaling

● All agents take longer to learn as the image pool grows.

● DreamerV3 is the most robust, likely due to its world model.
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Results: Performance of Variants

● Pretraining ID & OOD improves 
PPO performance.

● Decoding helps DreamerV3.

● SAC with Data Augmentation 
(RAD) is highly effective.

● Auxiliary methods 
underperform baselines. Their 
assumptions don't seem to hold 
in SPGym.
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Conclusion

SPGym is a new benchmark that isolates the visual representation 
challenge from the environment dynamics, rewards, state and action spaces.

● Sophisticated representation learning techniques struggle with SPGym's 
unique characteristics.

● Agents seem to memorize specific visual features rather than understand 
the underlying task structure.

● Simply increasing the diversity of training data is not enough to bridge 
this gap with current algorithms.
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