GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers Guoguo Ai¹, Guansong Pang², Hezhe Qiao², Yuan Gao¹, Hui Yan¹ ¹School of Computer Science and Engineering, Nanjing University of Science and Technology, China ²School of Computing and Information Systems, Singapore Management University, Singapore Figure 2: Overview of GrokFormer. In addition to the use of self-attention to capture global information in the spatial domain, a novel Graph Fourier KAN is proposed in GrokFormer to achieve global graph modeling in the spectral domain. This design enables a strong adaptability in both spectral order and graph spectrum, offering superior expressive power in capturing diverse graph frequency signals. GrokFormer synthesizes the spatial and spectral representations by a standard summation and normalization layer, followed by a Feed-Forward Network (FFN) layer for prediction. ### The Proposed GrokFormer Filter $$\phi_h(\lambda) = \sum_{k=1}^K \sum_{m=0}^M \left(\cos\left(m\lambda^k\right) \cdot a_{km} + \sin\left(m\lambda^k\right) \cdot b_{km}\right)$$ ### Order and Spectrum Adaptability $$b_k(\lambda) = \sum_{m=0}^{M} \left(\cos\left(m\lambda^k\right) \cdot a_m + \sin\left(m\lambda^k\right) \cdot b_m\right) \quad h(\lambda) = \sum_{k=1}^{K} \alpha_k b_k(\lambda)$$ ## Spectral Graph Convolution $$\mathbf{X}_F^{(l)} = \mathbf{U} \operatorname{diag}(h(\lambda)) \mathbf{U}^{\top} \mathbf{X}^{(l-1)}$$ #### Network Architecture of GrokFormer $$\mathbf{X}^{(l)} = EMHA\left(LN\left(\mathbf{X}^{(l-1)}\right)\right) + \mathbf{X}^{(l-1)} + \mathbf{X}_F^{(l)}$$ $$\mathbf{X}^{(l)} = FFN\left(LN\left(\mathbf{X}^{(l)}\right)\right) + \mathbf{X}^{(l)}$$ > Our graph filter is learnable in both spectral order and graph spectrum. $$h(\lambda) = \sum_{k=1}^{K} \alpha_k \sum_{m=0}^{M} \left(\cos \left(m\lambda^k \right) \cdot a_{km} + \sin \left(m\lambda^k \right) \cdot b_{km} \right)$$ Existing polynomial filters are a simplified variant of our graph filter. $$h(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \dots + \alpha_K \lambda^K = \sum_{k=0}^K \alpha_k \lambda^k$$ > Specformer filter is a simplified variant of our graph filter. $$h_s(\lambda) = a_0 \lambda + \sum_{i=1}^{M} (\sin(m\lambda) \cdot a_i + \cos(m\lambda) \cdot b_i)$$ \triangleright Our filter $h(\lambda)$ can approximate any continuous function and constructs a permutation-equivariant spectral graph convolution. Table 2: Node classification results on five homophilic and five heterophilic datasets: mean accuracy (%) \pm std. The best results are in bold, while the second-best ones are underlined. 'OOM' means out of memory | | Homophilic Datasets | | | | | | Heterophilic Datasets | | | | | |--------------------|--------------------------------|--|--|------------------|--------------------------------|--|-----------------------|-------------------------------|------------------------------|------------------------------|------------------------------| | | Cora | Citeseer | Pubmed | Photo | WikiCS | Physics | Penn94 | Chameleon | Squirrel | Actor | Texas | | | Spatial-based GNNs | | | | | | | | | | | | GCN | 87.14±1.01 | 79.86 ± 0.67 | 86.74±0.27 | 88.26±0.73 | 82.32 ± 0.69 | 97.74±0.35 | 82.47±0.27 | 59.61±2.21 | 46.78±0.87 | 33.23 ± 1.16 | 77.38±3.28 | | GAT | 88.03±0.79 | 80.52 ± 0.71 | 87.04 ± 0.24 | 90.94 ± 0.68 | 83.22 ± 0.78 | 97.82 ± 0.28 | 81.53±0.55 | 63.13 ± 1.93 | 44.49 ± 0.88 | 33.93 ± 2.47 | 80.82 ± 2.13 | | H2GCN | 87.96±0.37 | $80.90{\scriptstyle\pm1.21}$ | 89.18 ± 0.28 | 95.45 ± 0.67 | 83.45 ± 0.26 | 97.19 ± 0.13 | 81.31±0.60 | 61.20 ± 4.28 | 39.53 ± 0.88 | 36.31 ± 2.58 | 91.89 ± 3.93 | | HopGNN | $88.68{\scriptstyle\pm1.06}$ | $80.38 \scriptstyle{\pm 0.68}$ | $89.15{\scriptstyle\pm0.35}$ | 94.49 ± 0.33 | $84.73{\scriptstyle\pm0.59}$ | $97.86 \scriptstyle{\pm 0.16}$ | OOM | 65.25 ± 3.49 | $57.83{\scriptstyle\pm2.11}$ | 39.33 ± 2.79 | $89.15{\scriptstyle\pm4.04}$ | | 300000 V | Spectral-based GNNs | | | | | | | | | | | | ChebyNet | 86.67 ± 0.82 | 79.11±0.75 | 87.95 ± 0.28 | 93.77 ± 0.32 | 82.95 ± 0.45 | 97.25 ± 0.78 | 81.09±0.33 | 59.28±1.25 | 40.55 ± 0.42 | 37.61 ± 0.89 | 86.22±2.45 | | GPRGNN | 88.57±0.69 | 80.12 ± 0.83 | 88.46 ± 0.33 | 93.85 ± 0.28 | 82.58 ± 0.89 | 97.25 ± 0.13 | 81.38±0.16 | 67.28 ± 1.09 | 50.15 ± 1.92 | 39.92 ± 0.67 | 92.95 ± 1.31 | | BernNet | 88.52 ± 0.95 | 80.09 ± 0.79 | $88.48 \scriptstyle{\pm 0.41}$ | 93.63 ± 0.35 | $83.56 \scriptstyle{\pm 0.61}$ | 97.36 ± 0.30 | 82.47±0.21 | $68.29{\scriptstyle\pm1.58}$ | 51.35 ± 0.73 | 41.79 ± 1.01 | 93.12 ± 0.65 | | JacobiConv | $88.98 \scriptstyle{\pm 0.46}$ | 80.78 ± 0.79 | 89.62 ± 0.41 | 95.43 ± 0.23 | 84.13 ± 0.49 | $97.56 \scriptstyle{\pm 0.28}$ | 83.35±0.11 | 74.20 ± 1.03 | 57.38 ± 1.25 | 41.17 ± 0.64 | 93.44 ± 2.13 | | HiGCN | 89.23 ± 0.23 | $81.12{\scriptstyle\pm0.28}$ | 89.95 ± 0.13 | 95.33 ± 0.37 | $83.14{\scriptstyle\pm0.78}$ | 97.65 ± 0.35 | OOM | $68.47{\scriptstyle\pm0.45}$ | $51.86{\scriptstyle\pm0.42}$ | $41.81{\scriptstyle\pm0.52}$ | 92.15 ± 0.73 | | Graph Transformers | | | | | | | | | | | | | Transformer | 71.83±1.68 | 70.55 ± 1.20 | 86.66±0.50 | 89.58±1.05 | 77.36±1.25 | OOM | OOM | 45.21±2.01 | 33.17±1.32 | 39.95 ± 0.64 | 88.75±6.30 | | GraphGPS | 83.42 ± 1.22 | 75.87 ± 0.71 | 86.62 ± 0.53 | 94.35 ± 0.25 | 79.26 ± 0.57 | 97.60 ± 0.05 | OOM | 46.07 ± 1.51 | 34.14 ± 0.73 | 37.68 ± 0.94 | 83.71±5.85 | | NodeFormer | 87.32 ± 0.92 | 79.56 ± 1.10 | 89.24 ± 0.23 | 95.27 ± 0.22 | 81.03 ± 0.94 | 96.45 ± 0.28 | 69.66±0.83 | 56.34 ± 1.11 | 43.42 ± 1.62 | 34.62 ± 1.82 | 84.63 ± 3.47 | | SGFormer | 87.87 ± 2.67 | 79.62 ± 1.63 | 89.07 ± 0.14 | 94.34 ± 0.23 | 82.71 ± 0.56 | 97.96 ± 0.81 | 76.65±0.49 | 61.44 ± 1.37 | 45.82 ± 2.17 | 41.69 ± 0.63 | 92.46 ± 1.48 | | NAGphormer | 88.15±1.35 | 80.12 ± 1.24 | 89.70 ± 0.19 | 95.49 ± 0.11 | 83.41 ± 0.34 | 97.85 ± 0.26 | 73.98±0.53 | 54.92 ± 1.11 | 48.55 ± 2.56 | 40.08 ± 1.50 | $91.80_{\pm 1.85}$ | | Specformer | 88.57 ± 1.01 | 81.49 ± 0.94 | 90.61 ± 0.23 | 95.48 ± 0.32 | $85.15{\scriptstyle\pm0.63}$ | 97.75 ± 0.53 | 84.32±0.32 | 74.72 ± 1.29 | $64.64{\scriptstyle\pm0.81}$ | 41.93 ± 1.04 | $88.23{\scriptstyle\pm0.38}$ | | PolyFormer | $87.67{\scriptstyle\pm1.28}$ | $\underline{81.80{\scriptstyle\pm0.76}}$ | $\underline{90.68}{\scriptstyle\pm0.31}$ | 94.08 ± 1.37 | 83.62 ± 0.17 | $\underline{98.08}{\scriptstyle\pm0.27}$ | 79.27±0.26 | $\overline{60.17}_{\pm 1.39}$ | 44.98±3.03 | $41.51_{\pm 0.71}$ | $89.02{\scriptstyle\pm5.44}$ | | GrokFormer | 89.57±1.43 | 81.92±1.25 | 91.39±0.51 | 95.52±0.52 | 85.57±0.65 | 98.31±0.18 | 83.59±0.26 | 75.58±1.73 | 65.12±1.59 | 42.98±1.48 | 94.59±2.08 |