

GrokFormer: Graph Fourier Kolmogorov-Arnold Transformers

Guoguo Ai¹, Guansong Pang², Hezhe Qiao², Yuan Gao¹, Hui Yan¹

¹School of Computer Science and Engineering, Nanjing University of Science and Technology, China

²School of Computing and Information Systems, Singapore Management University, Singapore

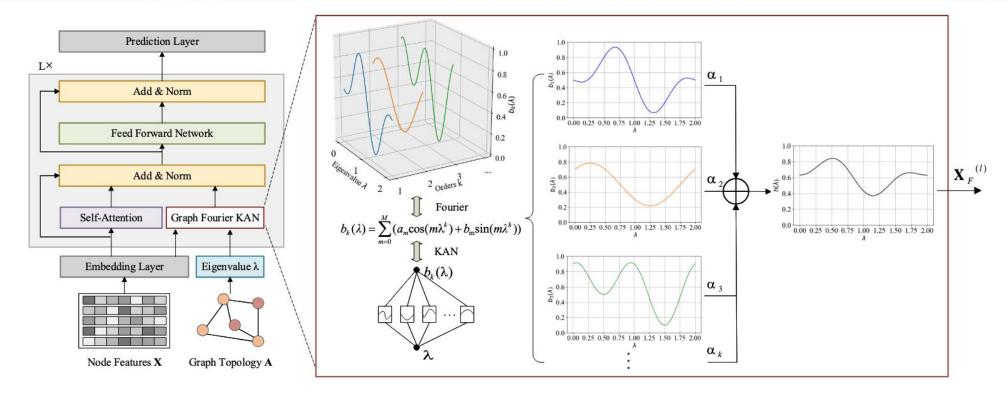
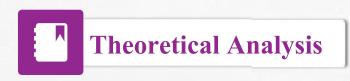


Figure 2: Overview of GrokFormer. In addition to the use of self-attention to capture global information in the spatial domain, a novel Graph Fourier KAN is proposed in GrokFormer to achieve global graph modeling in the spectral domain. This design enables a strong adaptability in both spectral order and graph spectrum, offering superior expressive power in capturing diverse graph frequency signals. GrokFormer synthesizes the spatial and spectral representations by a standard summation and normalization layer, followed by a Feed-Forward Network (FFN) layer for prediction.

The Proposed GrokFormer Filter

$$\phi_h(\lambda) = \sum_{k=1}^K \sum_{m=0}^M \left(\cos\left(m\lambda^k\right) \cdot a_{km} + \sin\left(m\lambda^k\right) \cdot b_{km}\right)$$

Order and Spectrum Adaptability


$$b_k(\lambda) = \sum_{m=0}^{M} \left(\cos\left(m\lambda^k\right) \cdot a_m + \sin\left(m\lambda^k\right) \cdot b_m\right) \quad h(\lambda) = \sum_{k=1}^{K} \alpha_k b_k(\lambda)$$

Spectral Graph Convolution

$$\mathbf{X}_F^{(l)} = \mathbf{U} \operatorname{diag}(h(\lambda)) \mathbf{U}^{\top} \mathbf{X}^{(l-1)}$$

Network Architecture of GrokFormer

$$\mathbf{X}^{(l)} = EMHA\left(LN\left(\mathbf{X}^{(l-1)}\right)\right) + \mathbf{X}^{(l-1)} + \mathbf{X}_F^{(l)}$$
$$\mathbf{X}^{(l)} = FFN\left(LN\left(\mathbf{X}^{(l)}\right)\right) + \mathbf{X}^{(l)}$$

> Our graph filter is learnable in both spectral order and graph spectrum.

$$h(\lambda) = \sum_{k=1}^{K} \alpha_k \sum_{m=0}^{M} \left(\cos \left(m\lambda^k \right) \cdot a_{km} + \sin \left(m\lambda^k \right) \cdot b_{km} \right)$$

Existing polynomial filters are a simplified variant of our graph filter.

$$h(\lambda) = \alpha_0 + \alpha_1 \lambda + \alpha_2 \lambda^2 + \dots + \alpha_K \lambda^K = \sum_{k=0}^K \alpha_k \lambda^k$$

> Specformer filter is a simplified variant of our graph filter.

$$h_s(\lambda) = a_0 \lambda + \sum_{i=1}^{M} (\sin(m\lambda) \cdot a_i + \cos(m\lambda) \cdot b_i)$$

 \triangleright Our filter $h(\lambda)$ can approximate any continuous function and constructs a permutation-equivariant spectral graph convolution.

Table 2: Node classification results on five homophilic and five heterophilic datasets: mean accuracy (%) \pm std. The best results are in bold, while the second-best ones are underlined. 'OOM' means out of memory

	Homophilic Datasets						Heterophilic Datasets				
	Cora	Citeseer	Pubmed	Photo	WikiCS	Physics	Penn94	Chameleon	Squirrel	Actor	Texas
	Spatial-based GNNs										
GCN	87.14±1.01	79.86 ± 0.67	86.74±0.27	88.26±0.73	82.32 ± 0.69	97.74±0.35	82.47±0.27	59.61±2.21	46.78±0.87	33.23 ± 1.16	77.38±3.28
GAT	88.03±0.79	80.52 ± 0.71	87.04 ± 0.24	90.94 ± 0.68	83.22 ± 0.78	97.82 ± 0.28	81.53±0.55	63.13 ± 1.93	44.49 ± 0.88	33.93 ± 2.47	80.82 ± 2.13
H2GCN	87.96±0.37	$80.90{\scriptstyle\pm1.21}$	89.18 ± 0.28	95.45 ± 0.67	83.45 ± 0.26	97.19 ± 0.13	81.31±0.60	61.20 ± 4.28	39.53 ± 0.88	36.31 ± 2.58	91.89 ± 3.93
HopGNN	$88.68{\scriptstyle\pm1.06}$	$80.38 \scriptstyle{\pm 0.68}$	$89.15{\scriptstyle\pm0.35}$	94.49 ± 0.33	$84.73{\scriptstyle\pm0.59}$	$97.86 \scriptstyle{\pm 0.16}$	OOM	65.25 ± 3.49	$57.83{\scriptstyle\pm2.11}$	39.33 ± 2.79	$89.15{\scriptstyle\pm4.04}$
300000 V	Spectral-based GNNs										
ChebyNet	86.67 ± 0.82	79.11±0.75	87.95 ± 0.28	93.77 ± 0.32	82.95 ± 0.45	97.25 ± 0.78	81.09±0.33	59.28±1.25	40.55 ± 0.42	37.61 ± 0.89	86.22±2.45
GPRGNN	88.57±0.69	80.12 ± 0.83	88.46 ± 0.33	93.85 ± 0.28	82.58 ± 0.89	97.25 ± 0.13	81.38±0.16	67.28 ± 1.09	50.15 ± 1.92	39.92 ± 0.67	92.95 ± 1.31
BernNet	88.52 ± 0.95	80.09 ± 0.79	$88.48 \scriptstyle{\pm 0.41}$	93.63 ± 0.35	$83.56 \scriptstyle{\pm 0.61}$	97.36 ± 0.30	82.47±0.21	$68.29{\scriptstyle\pm1.58}$	51.35 ± 0.73	41.79 ± 1.01	93.12 ± 0.65
JacobiConv	$88.98 \scriptstyle{\pm 0.46}$	80.78 ± 0.79	89.62 ± 0.41	95.43 ± 0.23	84.13 ± 0.49	$97.56 \scriptstyle{\pm 0.28}$	83.35±0.11	74.20 ± 1.03	57.38 ± 1.25	41.17 ± 0.64	93.44 ± 2.13
HiGCN	89.23 ± 0.23	$81.12{\scriptstyle\pm0.28}$	89.95 ± 0.13	95.33 ± 0.37	$83.14{\scriptstyle\pm0.78}$	97.65 ± 0.35	OOM	$68.47{\scriptstyle\pm0.45}$	$51.86{\scriptstyle\pm0.42}$	$41.81{\scriptstyle\pm0.52}$	92.15 ± 0.73
Graph Transformers											
Transformer	71.83±1.68	70.55 ± 1.20	86.66±0.50	89.58±1.05	77.36±1.25	OOM	OOM	45.21±2.01	33.17±1.32	39.95 ± 0.64	88.75±6.30
GraphGPS	83.42 ± 1.22	75.87 ± 0.71	86.62 ± 0.53	94.35 ± 0.25	79.26 ± 0.57	97.60 ± 0.05	OOM	46.07 ± 1.51	34.14 ± 0.73	37.68 ± 0.94	83.71±5.85
NodeFormer	87.32 ± 0.92	79.56 ± 1.10	89.24 ± 0.23	95.27 ± 0.22	81.03 ± 0.94	96.45 ± 0.28	69.66±0.83	56.34 ± 1.11	43.42 ± 1.62	34.62 ± 1.82	84.63 ± 3.47
SGFormer	87.87 ± 2.67	79.62 ± 1.63	89.07 ± 0.14	94.34 ± 0.23	82.71 ± 0.56	97.96 ± 0.81	76.65±0.49	61.44 ± 1.37	45.82 ± 2.17	41.69 ± 0.63	92.46 ± 1.48
NAGphormer	88.15±1.35	80.12 ± 1.24	89.70 ± 0.19	95.49 ± 0.11	83.41 ± 0.34	97.85 ± 0.26	73.98±0.53	54.92 ± 1.11	48.55 ± 2.56	40.08 ± 1.50	$91.80_{\pm 1.85}$
Specformer	88.57 ± 1.01	81.49 ± 0.94	90.61 ± 0.23	95.48 ± 0.32	$85.15{\scriptstyle\pm0.63}$	97.75 ± 0.53	84.32±0.32	74.72 ± 1.29	$64.64{\scriptstyle\pm0.81}$	41.93 ± 1.04	$88.23{\scriptstyle\pm0.38}$
PolyFormer	$87.67{\scriptstyle\pm1.28}$	$\underline{81.80{\scriptstyle\pm0.76}}$	$\underline{90.68}{\scriptstyle\pm0.31}$	94.08 ± 1.37	83.62 ± 0.17	$\underline{98.08}{\scriptstyle\pm0.27}$	79.27±0.26	$\overline{60.17}_{\pm 1.39}$	44.98±3.03	$41.51_{\pm 0.71}$	$89.02{\scriptstyle\pm5.44}$
GrokFormer	89.57±1.43	81.92±1.25	91.39±0.51	95.52±0.52	85.57±0.65	98.31±0.18	83.59±0.26	75.58±1.73	65.12±1.59	42.98±1.48	94.59±2.08