Clipped SGD Algorithms for Performative Prediction: Tight Bounds for Clipping Bias and Remedies

Qiang Li* Michal Yemini† Hoi-To Wai* * Dept. of SEEM, CUHK, † Fac. of Engineering, Bar-llan University.

Performative Prediction

- ♦ Motivation: Learning in economic or ♦ societal environment is causative.
- ♦ **Example**: Hiring, Loan application.

♦ Perf Pred: model to be trained can influence the outcome they aim to predict.

Formulation

- \diamond *Performativity* modeled by **distribution** shift $\mathcal{D}(\boldsymbol{\theta})$.
- \diamond Let $\ell(\pmb{\theta};Z)$ be the loss function to be minimized,

SGD-Greedy Deploy (SGD-GD):

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \gamma \nabla \ell(\boldsymbol{\theta}_t; Z_{t+1}), \ Z_{t+1} \sim \mathcal{D}(\boldsymbol{\theta}_t)$$

- ♦ Interaction between *learner* and *data*.
- ◇ Risk: model inversion attack [Ghosh et al., 2009] exposes sensitive user data using just the training history of SGD.

Convergence Metrics (str/non cvx)

- \diamond **Def.** Performative stable (PS) solution: $\boldsymbol{\theta}_{PS} = \arg\min_{\boldsymbol{\theta}' \in \mathbb{R}^d} \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_{PS})}[\ell(\boldsymbol{\theta}'; Z)].$
- \diamond **Def.** $\boldsymbol{\theta}^{\star} \in \mathbb{R}^{d}$ is an δ -SPS solution if: $\left\|\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}^{\star})}[\nabla \ell(\boldsymbol{\theta}^{\star}; Z)]\right\|^{2} \leq \delta$
- \diamond If $\ell(\theta;z)$ is strongly convex, then (0-)SPS \iff PS solution.

Two Clipping Algorithms

 \Rightarrow Draw sample $Z_{t+1} \sim \mathcal{D}(\boldsymbol{\theta}_t)$, injected noise $\zeta_{t+1} \sim \mathcal{N}(0, \sigma_{\mathsf{DP}}^2 \boldsymbol{I})$.

Projected Clipped SGD (PCSGD):

$$oldsymbol{ heta}_{t+1} = \mathcal{P}_{\mathcal{X}} \left(oldsymbol{ heta}_t - \gamma_{t+1} \mathsf{clip}_c \left[\nabla \ell(oldsymbol{ heta}_t; Z_{t+1}] + \zeta_{t+1} \right),$$

where $\mathcal{P}_{\mathcal{X}}(\cdot)$ is project operator, clipping operator is

$$\mathsf{clip}_c(m{g}): m{g} \in \mathbb{R}^d \mapsto \min\left\{1, rac{c}{\|m{g}\|_2}
ight\}m{g} o \mathsf{reduce} \; \mathsf{gradient} \; \mathsf{exposure}$$

DiceSGD [Zhang et al., 2024]:
$$v_{t+1} = \mathsf{clip}_{C_1}(\nabla \ell(\boldsymbol{\theta}_t; Z_{t+1})) + \mathsf{clip}_{C_2}(e_t)$$

$$\boldsymbol{\theta}_{t+1} = \boldsymbol{\theta}_t - \gamma_{t+1}(v_{t+1} + \zeta_{t+1}), \quad e_{t+1} = e_t + \nabla \ell(\boldsymbol{\theta}_t; Z_{t+1}) - v_{t+1}$$

Main Results

- \diamond Set $f(\boldsymbol{\theta}_1; \boldsymbol{\theta}_2) := \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_2)}[\ell(\boldsymbol{\theta}; Z)]$, partial gradient $\nabla f(\boldsymbol{\theta}_1; \boldsymbol{\theta}_2) := \mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_2)}[\nabla \ell(\boldsymbol{\theta}; Z)]$.
- \diamond A1. (Smoothness) $\|\nabla \ell(\boldsymbol{\theta};z) \nabla \ell(\boldsymbol{\theta}';z')\| \leq L(\|\boldsymbol{\theta} \boldsymbol{\theta}'\| + \|z z'\|)$.
- \diamond **A2**. (Variance) $\mathbb{E}_{Z \sim \mathcal{D}(\boldsymbol{\theta}_2)} \left| \left\| \nabla \ell(\boldsymbol{\theta}_1; Z) \nabla f(\boldsymbol{\theta}_1; \boldsymbol{\theta}_2) \right\|^2 \right| \leq \sigma_0^2 + \sigma_1^2 \left\| \nabla f(\boldsymbol{\theta}_1; \boldsymbol{\theta}_2) \right\|^2$.
- \diamond A3. (Bounded Gradient) There exists $G \ge 0$ s.t. $\sup_{\theta \in \mathcal{X}, z \in \mathsf{Z}} \|\nabla \ell(\theta; z)\| \le G$.
- \diamond A4. (Wasserstein sensitivity) $\mathcal{W}_1(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}(\boldsymbol{\theta}')) \leq \beta \|\boldsymbol{\theta} \boldsymbol{\theta}'\|$.
- \diamond C1: (TV sensitivity): Total variation distance $d_{\mathsf{TV}}(\mathcal{D}(\boldsymbol{\theta}), \mathcal{D}(\boldsymbol{\theta}')) \leq \beta \|\boldsymbol{\theta} \boldsymbol{\theta}'\|$.
- \diamond C2: (Bounded loss): There exists $\ell_{\mathsf{max}} \geq 0$ s.t., $\sup_{\boldsymbol{\theta} \in \mathbb{R}^d, z \in \mathsf{Z}} |\ell(\boldsymbol{\theta}; z)| \leq \ell_{\mathsf{max}}$.

Theorem 1: Under **A1,3,4**. Suppose $\beta < \frac{\mu}{L}$, $f(\theta; \overline{\theta})$ is strongly convex w.r.t. θ and denote $\widetilde{\mu} := \mu - L\beta$, then the iterates of **PCSGD** hold that

$$\mathbb{E}[\|\boldsymbol{\theta}_{t+1} - \boldsymbol{\theta}_{PS}\|^2] \leq \prod_{i=1}^{t+1} (1 - \widetilde{\mu}\gamma_i) \|\hat{\boldsymbol{\theta}}_0\|^2 + \frac{2(c^2 + G^2)}{\widetilde{\mu}} \gamma_{t+1} + \frac{8(\max\{G - c, 0\})^2}{\widetilde{\mu}^2},$$

Theorem 2: bias order is **tight**: Bias = $\Theta(1/(\mu - L\beta)^2)$, which increases as $\beta \uparrow \frac{\mu}{L}$.

Theorem 3: Suppose $f(\cdot; \boldsymbol{\theta})$ is non-cvx. Under **A1,2,3**, **C1,2**. **PCSGD** holds that $\mathbb{E}[\|\nabla f(\boldsymbol{\theta}_\mathsf{T}; \boldsymbol{\theta}_\mathsf{T})\|^2] \lesssim \frac{1}{\sqrt{T}} + \mathcal{O}(\ell_{max}\beta + \max\{G - c, 0\}^2).$

- ♦ Idea: time varying Lyapunov function for non-gradient and non-smooth dynamics.
- \diamond Cor. 1 (Privacy Guarantee) PCSGD is (ε, δ) -DP if we let $\sigma_{\text{DP}} \ge c\sqrt{T \log(1/\delta)}/(m\varepsilon)$.
- \diamond Cor. 2 (Optimal Constant Stepsize) To reduce bias, we set $\gamma^* = \widetilde{\mathcal{O}}((\widetilde{\mu}T)^{-1})$.
- \diamond Cor. 3 (Optimal Clipping Threshold) To achieve opt. asymptotic ub, $c^* = \frac{2Gm^2\varepsilon^2}{d\log(1/\delta) + 2m^2\varepsilon^2}$.

Reducing Clipping Bias in Clipped SGD

 \diamond **DiceSGD**: error feedback mechanism is effective in removing the asymptotic bias. Since the fixed point $(\bar{e}; \overline{\theta})$ satisfies

$$-\mathsf{clip}_{C_2}(ar{e}) = \mathbb{E}_{Z\sim\mathcal{D}(ar{oldsymbol{ heta}})}[\mathsf{clip}_{C_1}(
abla\ell(ar{oldsymbol{ heta}};Z))]$$

$$abla f(ar{m{ heta}};ar{m{ heta}}) - \mathsf{clip}_{C_2}(ar{e}) = \mathbb{E}_{Z\sim\mathcal{D}(ar{m{ heta}})}[\mathsf{clip}_{C_1}(
abla \ell(ar{m{ heta}};Z))]$$

 \diamond If $C_2 \geq C_1$, fixed point $(\overline{e}; \overline{\boldsymbol{\theta}})$ satisfies $\nabla f(\overline{\boldsymbol{\theta}}; \overline{\boldsymbol{\theta}}) = \mathbf{0}$.

Theorem 4: Suppose that $f(\cdot; \boldsymbol{\theta})$ is strongly convex and $\beta < \frac{\mu}{L}$. Under **A1,2,4** and mild assumptions, **DiceSGD** holds $\mathbb{E}\|\boldsymbol{\theta}_t - \boldsymbol{\theta}_{PS}\|^2 \leq 2\mathbb{E}\|\tilde{\boldsymbol{\theta}}_t\|^2 + 2\gamma_t^2\mathbb{E}\|\boldsymbol{e}_t\|^2 = \mathcal{O}(1/t),$

where
$$\widetilde{m{ heta}}_t \coloneqq m{ heta}_t - \gamma_t e_t$$
.

Theorem 5: Suppose that $f(\cdot; \theta)$ is non-convex. Under A1,2, C1,2 and mild assumptions, **DiceSGD** holds

$$\min_{t=0,...,T-1} \mathbb{E}[\|\nabla f(\boldsymbol{\theta}_t;\boldsymbol{\theta}_t)\|^2] = \mathcal{O}\left(1/\sqrt{T} + \mathbf{b}\beta\right),$$

where $b = \mathcal{O}(\ell_{\text{max}}((C_1 + C_2) + \sqrt{d}\sigma_{\text{DP}}))$.

Quadratic Min. with Synthetic Data

⋄ Consider a scalar performative risk problem,

$$\min_{\boldsymbol{\theta} \in \mathcal{X}} \mathbb{E}_{z \sim \mathcal{D}(\boldsymbol{\theta})}[(\boldsymbol{\theta} + az)^2/2],$$

 \diamond **Data**: $\mathcal{D}(\boldsymbol{\theta}) = \text{Unif}\left(\{b\tilde{Z}_i - \beta\boldsymbol{\theta}\}_{i=1}^m\right)$, where $\tilde{Z}_i \sim \mathcal{B}(p)$ is Bernoulli. $\boldsymbol{\theta}_{PS} = -\bar{p}a/(1-a\beta)$, where \bar{p} is sampel mean.

- ♦ (Left) SGD w/ DP noise can not converge. PCSGD converge to θ_{PS} with bias which increase as $\beta \uparrow [Thm1&2 \checkmark]$
- \diamond DiceSGD finds bias-free sol. at rate of $\mathcal{O}(1/t)$ [Thm4 \checkmark]
- \diamond (Middle & Right) set opt step size γ^* adapted to dist. shift achieves smaller bias. [Cor. 1 \checkmark] As privacy budget $\varepsilon \downarrow$, or sensitivity $\beta \uparrow \frac{\mu}{L}$, the bias of PCSGD \uparrow [Cor. 2 \checkmark]

References

- ♦ Perdomo, Juan, et al. *Performative prediction*, ICML 2020.
- ♦ Zhang et al., Differentially private sgd without clipping bias, ICML, 2024.
- ♦ Gosh et al., *Universally utility-max. privacy mechanisms*, ACM, 2009.
- ♦ Li and Wai, Performative Prediction with NCVX Loss, NeurIPS 2024.