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Performative Prediction Two Clipping Algorithms Reducing Clipping Bias in Clipped SGD
¢ Motivation: Learning in economic or ¢ Draw sample Z; 1 ~ D(9t>, injected noise (.1 ~ N(O’ UIQDPI)' o DiceSGD: error feedback mechani§m IS efFective_in remov-
societal environment is causative. Projected Clipped SGD (PCSGD): ing the asymptotic bias. Since the fixed point (€; 8) satisfies
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o If Cy > (), fixed point (&; ) satisfies V £(0;0) = 0.

¢ Example: Hiring, Loan application.
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0,1 =0, — YO Zi 1), Ly ~ D(6y) o C1: (TV sensitivity): Total variation distance dty(D(0),D(0')) < 310 — 6’| o Data: D(0) = Unif ({0Z; — $8}]",), where Z; ~ B(p) is
o C2: (Bounded loss): There exists (o > 0 s.t., supgera ez |[£(0; 2)] < lmax. Bernoulli. 6pg = —pa/(1 — a3), where p is sampel mean.
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& Interaction between learner and data.

Theorem 1: Under Al,3,4. Suppose 3 < 7, £(0;0) is strongly convex w.r.t. @ and

¢ Risk: model inversion attack [Ghosh et ! _
denote 11 := u — L, then the iterates of PCSGD hold that

al., 2009] exposes sensitive user data us-
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o (Left) SGD w/ DP noise can not converge. PCSGD con-
verge to Opg with bias which increase as 8 1T [Thm1&2 /]

Convergence Metrics (str/non cvx)

Theorem 2: bias order is tight: Bias = ©(1/(1 — Lf)*), which increases as § 1 £.

¢ Def. Performative stable (PS) solution: Theorem 3: Suppose f(-;8) is non-cvx. Under A1,2,3, C1,2. PCSGD holds that O E)Ii;?deGID fzdlsQ.biz;‘s—;ree sol. at rate .of O(l/ctl) [Tgm‘lg]
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