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Performative Prediction

⋄ Motivation: Learning in economic or
societal environment is causative.

⋄ Example: Hiring, Loan application.

⋄ Perf Pred: model to be trained can in-
fluence the outcome they aim to predict.

Formulation

⋄ Performativity modeled by distribution
shift D(θ).

⋄ Let ℓ(θ;Z) be the loss function to be
minimized,

SGD-Greedy Deploy (SGD-GD):

θt+1 = θt − γ∇ℓ(θt;Zt+1), Zt+1 ∼ D(θt)

⋄ Interaction between learner and data.

⋄ Risk: model inversion attack [Ghosh et

al., 2009] exposes sensitive user data us-
ing just the training history of SGD.

Convergence Metrics (str/non cvx)

⋄ Def. Performative stable (PS) solution:

θPS = argminθ′∈RdEZ∼D(θPS)[ℓ(θ
′;Z)].

⋄ Def. θ⋆ ∈ Rd is an δ-SPS solution if:∥∥EZ∼D(θ⋆)[∇ℓ(θ⋆;Z)]
∥∥2 ≤ δ

⋄ If ℓ(θ; z) is strongly convex, then (0-)SPS
⇐⇒ PS solution.

Two Clipping Algorithms

⋄ Draw sample Zt+1 ∼ D(θt), injected noise ζt+1 ∼ N (0, σ2
DPI).

Projected Clipped SGD (PCSGD):

θt+1=PX (θt − γt+1clipc [∇ℓ(θt;Zt+1] + ζt+1) ,

where PX (·) is project operator, clipping operator is

clipc(g) : g ∈ Rd 7→ min
{
1, c

∥g∥2

}
g → reduce gradient exposure

DiceSGD [Zhang et al., 2024]: vt+1 = clipC1
(∇ℓ(θt;Zt+1)) + clipC2

(et)

θt+1 = θt − γt+1(vt+1 + ζt+1), et+1 = et +∇ℓ(θt;Zt+1)− vt+1

Main Results

⋄ Set f (θ1;θ2) := EZ∼D(θ2)[ℓ(θ;Z)], partial gradient ∇f (θ1;θ2) := EZ∼D(θ2) [∇ℓ(θ;Z)].

⋄ A1. (Smoothness) ∥∇ℓ(θ; z)−∇ℓ(θ′; z′)∥ ≤ L (∥θ − θ′∥ + ∥z − z′∥).
⋄ A2. (Variance) EZ∼D(θ2)

[
∥∇ℓ(θ1;Z)−∇f (θ1;θ2)∥2

]
≤ σ2

0 + σ2
1 ∥∇f (θ1;θ2)∥2.

⋄ A3. (Bounded Gradient) There exists G ≥ 0 s.t. supθ∈X ,z∈Z ∥∇ℓ(θ; z)∥ ≤ G.

⋄ A4. (Wasserstein sensitivity) W1(D(θ),D(θ′))≤β ∥θ − θ′∥.

⋄ C1: (TV sensitivity): Total variation distance dTV(D(θ),D(θ′)) ≤ β ∥θ − θ′∥.
⋄ C2: (Bounded loss): There exists ℓmax ≥ 0 s.t., supθ∈Rd,z∈Z |ℓ(θ; z)| ≤ ℓmax.

Theorem 1: Under A1,3,4. Suppose β < µ
L, f (θ;θ) is strongly convex w.r.t. θ and

denote µ̃ := µ− Lβ, then the iterates of PCSGD hold that

E[∥θt+1 − θPS∥2] ≤
t+1∏
i=1

(1− µ̃γi)∥θ̂0∥2 +
2(c2 +G2)

µ̃
γt+1 +

8(max{G− c, 0})2
µ̃2

,

Theorem 2: bias order is tight: Bias = Θ(1/(µ− Lβ)2), which increases as β ↑ µ
L.

Theorem 3: Suppose f (·;θ) is non-cvx. Under A1,2,3, C1,2. PCSGD holds that

E[∥∇f (θT;θT)∥2] ≲
1√
T
+O(ℓmaxβ +max{G− c, 0}2).

⋄ Idea: time varying Lyapunov function for non-gradient and non-smooth dynamics.

⋄ Cor. 1 (Privacy Guarantee) PCSGD is (ε, δ)-DP if we let σDP ≥ c
√
T log(1/δ)/(mε).

⋄ Cor. 2 (Optimal Constant Stepsize) To reduce bias, we set γ⋆ = Õ((µ̃T )−1).

⋄ Cor. 3 (Optimal Clipping Threshold) To achieve opt. asymptotic ub, c⋆ = 2Gm2ε2

d log(1/δ)+2m2ε2.

Reducing Clipping Bias in Clipped SGD

⋄ DiceSGD: error feedback mechanism is effective in remov-
ing the asymptotic bias. Since the fixed point (ē;θ) satisfies

−clipC2
(ē) = EZ∼D(θ̄)[clipC1

(∇ℓ(θ̄;Z))]

∇f (θ̄; θ̄)− clipC2
(ē) = EZ∼D(θ̄)[clipC1

(∇ℓ(θ̄;Z))]

⋄ If C2 ≥ C1, fixed point (ē;θ) satisfies ∇f (θ;θ) = 0.

Theorem 4: Suppose that f (·;θ) is strongly convex and
β < µ

L. Under A1,2,4 and mild assumptions, DiceSGD holds

E∥θt − θPS∥2 ≤ 2E∥θ̃t∥2 + 2γ2tE ∥et∥2 = O(1/t),

where θ̃t := θt − γtet.

Theorem 5: Suppose that f (·;θ) is non-convex. Under
A1,2, C1,2 and mild assumptions, DiceSGD holds

min
t=0,...,T−1

E[∥∇f (θt;θt)∥2] = O
(
1/
√
T + bβ

)
,

where b = O(ℓmax((C1 + C2) +
√
dσDP)).

Quadratic Min. with Synthetic Data

⋄ Consider a scalar performative risk problem,

min
θ∈X

Ez∼D(θ)[(θ + az)2/2],

⋄ Data: D(θ) = Unif
(
{bZ̃i − βθ}mi=1

)
, where Z̃i ∼ B(p) is

Bernoulli. θPS = −p̄a/(1− aβ), where p̄ is sampel mean.
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⋄ (Left) SGD w/ DP noise can not converge. PCSGD con-
verge to θPS with bias which increase as β ↑ [Thm1&2 ✓]

⋄ DiceSGD finds bias-free sol. at rate of O(1/t) [Thm4✓]

⋄ (Middle & Right) set opt step size γ⋆ adapted to dist.
shift achieves smaller bias. [Cor. 1 ✓] As privacy budget
ε ↓, or sensitivity β ↑ µ

L, the bias of PCSGD ↑ [Cor. 2 ✓]
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