
Collapse-Proof Non-Contrastive Self-Supervised Learning

Emanuele Tim Tinne



Non-Contrastive Learning ?

Backbone Backbone

Projector Projector

Similarity

2



What Can Go Wrong ?

Ideal embedding

Backbone Backbone

Projector Projector

Similarity

2



What Can Go Wrong ?

Ideal embedding

Representation collapse

Cluster collapse

Dimensional collapse

Intracluster collapse

Backbone Backbone

Projector Projector

Similarity

2



What Are The Main Non-Contrastive Strategies ?

Feature Decorrelation 
Barlow Twins [Zbontar et al. ICML 2021] , …
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SwAV [Caron et al. NeurIPS 2020] , …
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Are Existing Strategies Collapse-Proof ?
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Key Contributions

1. Sufficient conditions for avoiding collapses 

2. Design guidelines for the projector and the loss function 
based on hyperdimensional computing 
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Proposed Design of Projector and Loss Function
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Properties of The Projector
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Properties of The Projector

(Embedding Theorem) If optima of the loss are attained and : 
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Experiments on CIFAR-10 with ResNet
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