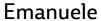
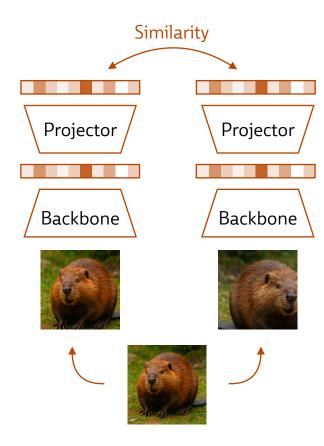
Collapse-Proof Non-Contrastive Self-Supervised Learning



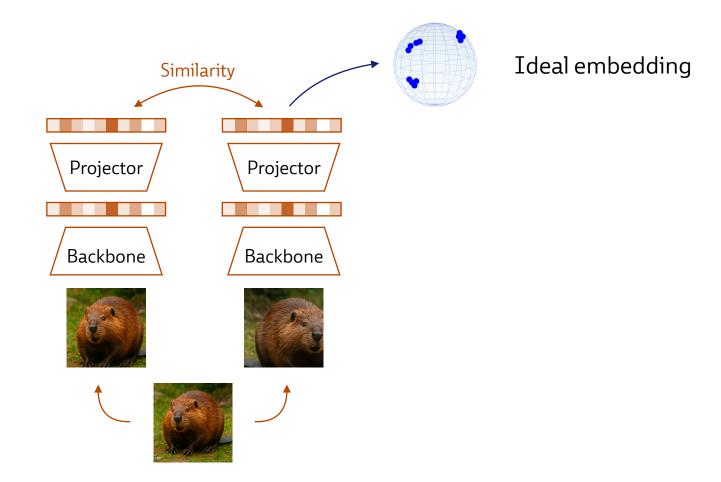
Tim

Tinne

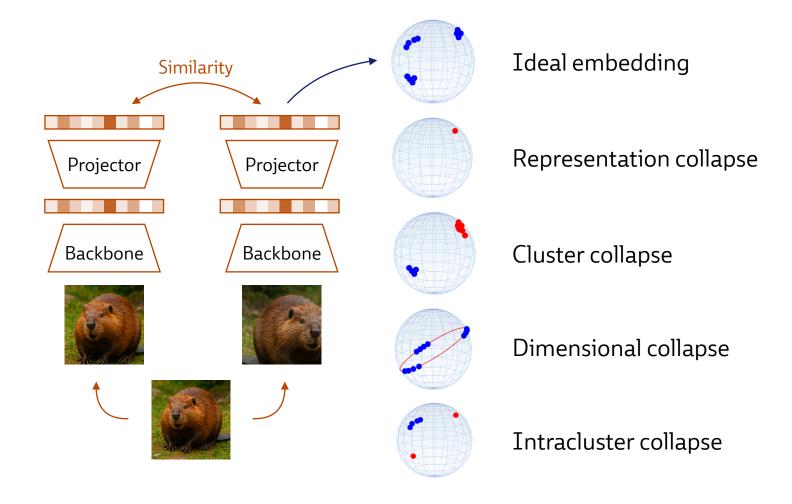
Non-Contrastive Learning?



What Can Go Wrong?



What Can Go Wrong?

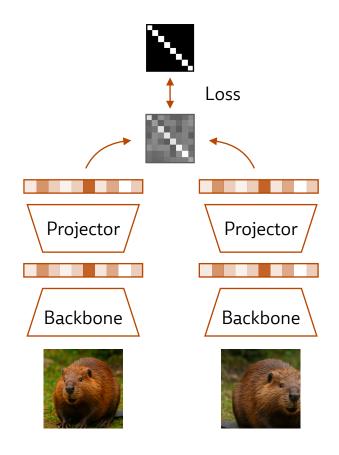


What Are The Main Non-Contrastive Strategies?

Feature Decorrelation
Barlow Twins [Zbontar et al. ICML 2021], ...

Clustering
SwAV [Caron et al. NeurIPS 2020], ...

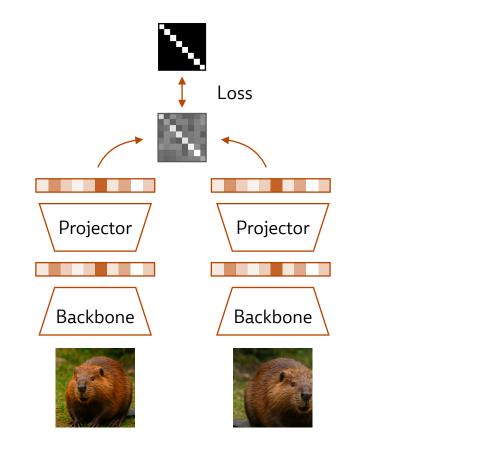
What Are The Main Non-Contrastive Strategies?



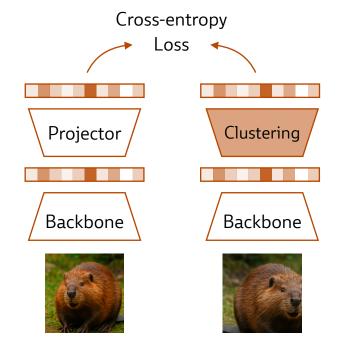
Feature Decorrelation
Barlow Twins [Zbontar et al. ICML 2021], ...

Clustering
SwAV [Caron et al. NeurIPS 2020] , ...

What Are The Main Non-Contrastive Strategies?

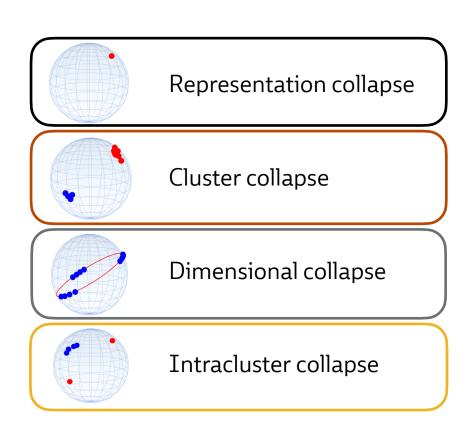


Feature Decorrelation
Barlow Twins [Zbontar et al. ICML 2021], ...



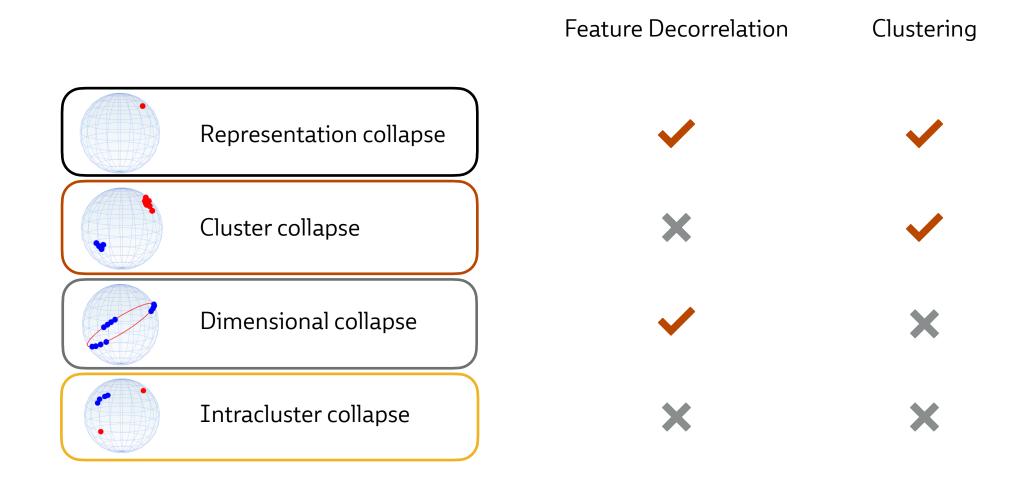
Clustering SwAV [Caron et al. NeurIPS 2020], ...

Are Existing Strategies Collapse-Proof?



Feature Decorrelation Clustering

Are Existing Strategies Collapse-Proof?

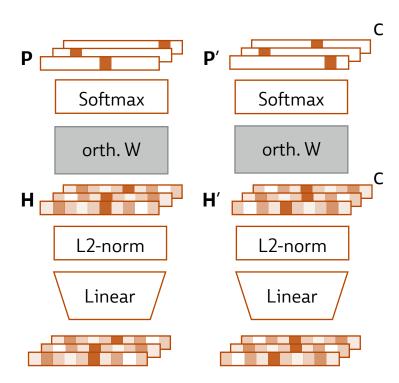


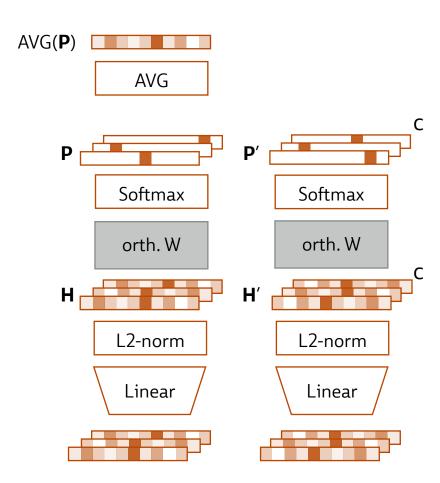
Key Contributions

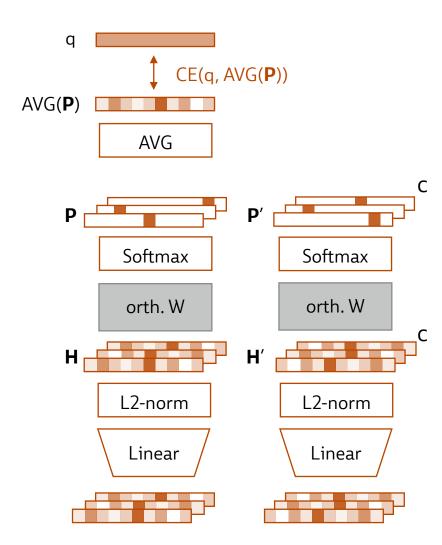
1. Sufficient conditions for avoiding collapses

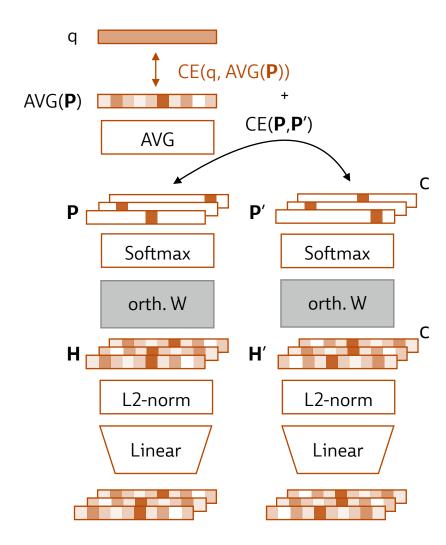
Key Contributions

- 1. Sufficient conditions for avoiding collapses
- 2. Design guidelines for the projector and the loss function based on hyperdimensional computing

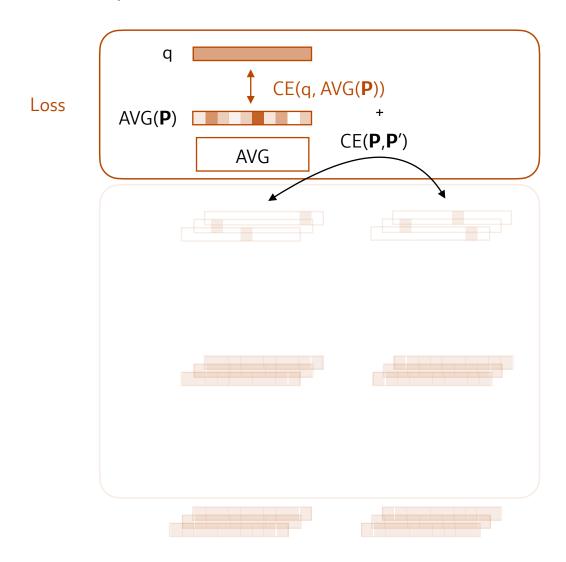








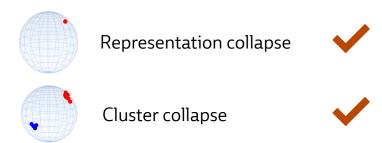
Properties of The Loss Function

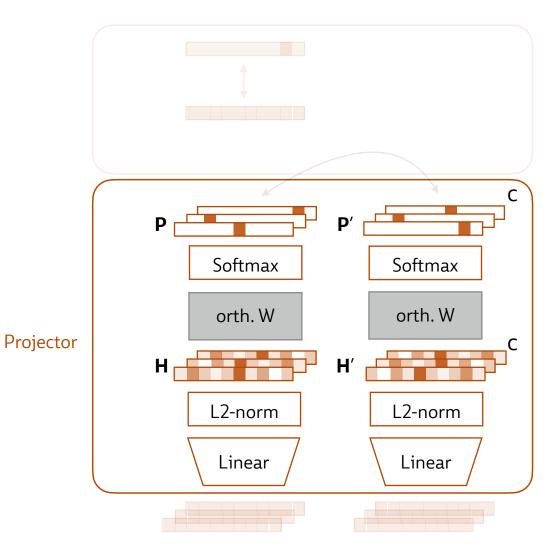


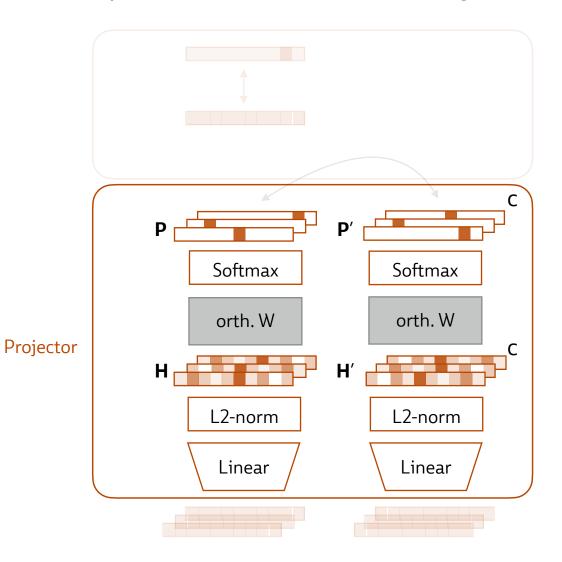
Properties of The Loss Function

CE(q, AVG(**P**)) Loss AVG(**P**) $CE(\mathbf{P},\mathbf{P}')$ AVG

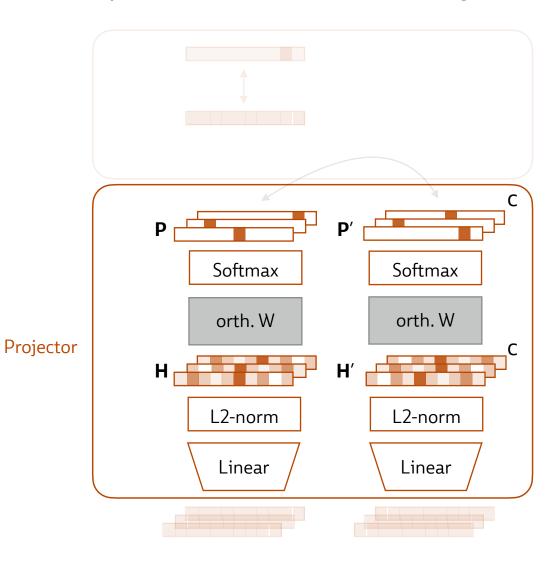
(Lemma) If optima are attained, then:





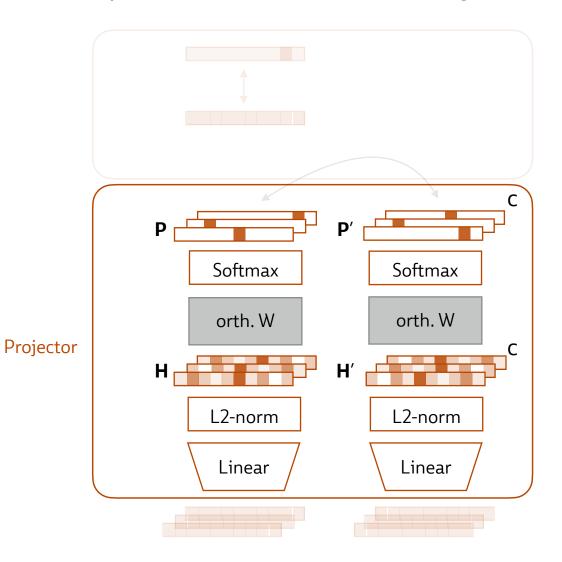


(Embedding Theorem) If optima of the loss are attained and $c \to \infty$:



(Embedding Theorem) If optima of the loss are attained and $c \to \infty$:

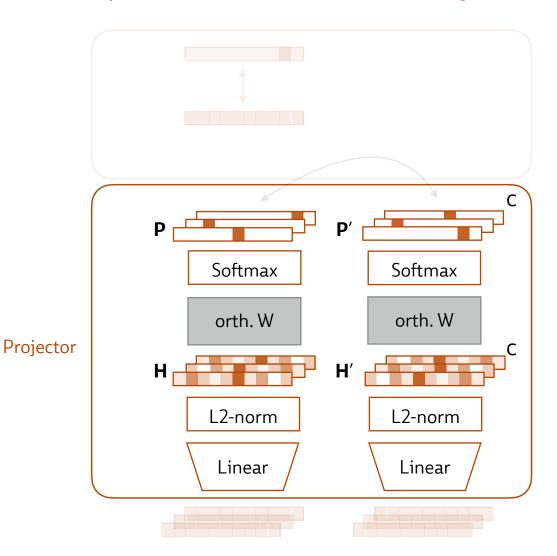
1. Perfect alignment



(Embedding Theorem) If optima of the loss are attained and $c \to \infty$:

1. Perfect alignment

2. Sample covariance $(\mathbf{H})^T \mathbf{H} = \mathbf{I}$ is diagonal



(Embedding Theorem) If optima of the loss are attained and $c \to \infty$:

1. Perfect alignment

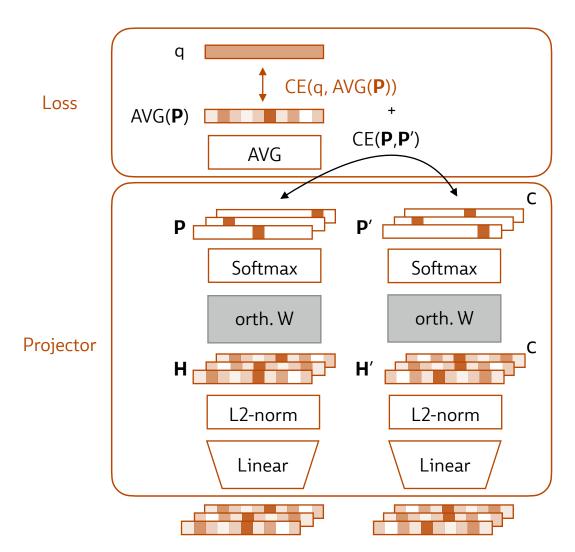
2. Sample covariance $(\mathbf{H})^T \mathbf{H} = \mathbf{I}$ is diagonal

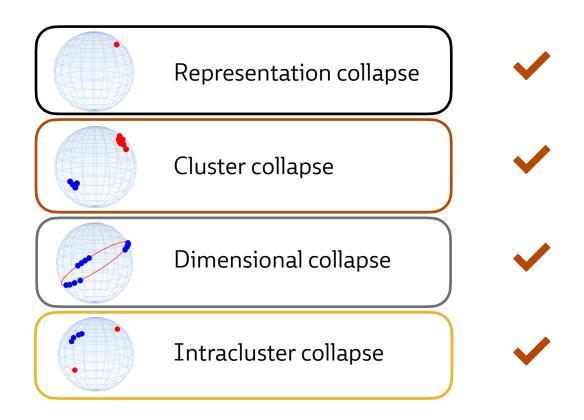
Dimensional collapse

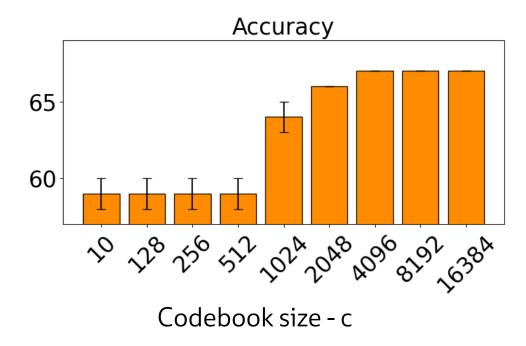
3. Adjacency $\mathbf{H}(\mathbf{H})^T$ is block-diagonal and block-size $\to 0$

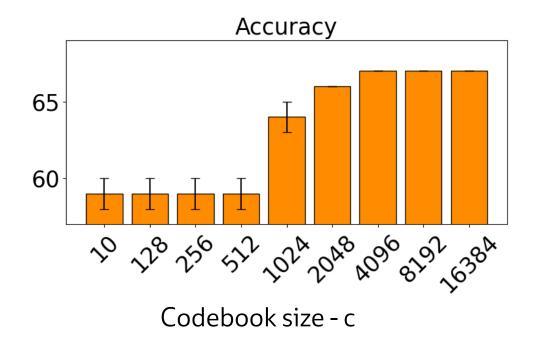
Intracluster collapse

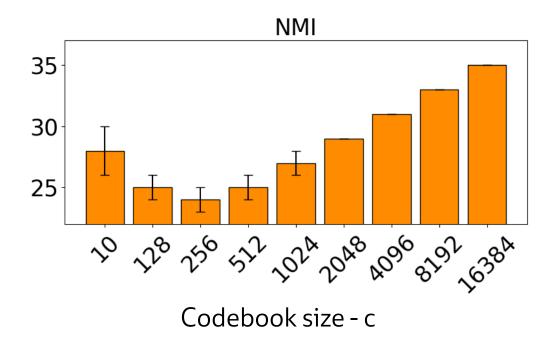
Collapse-Proof



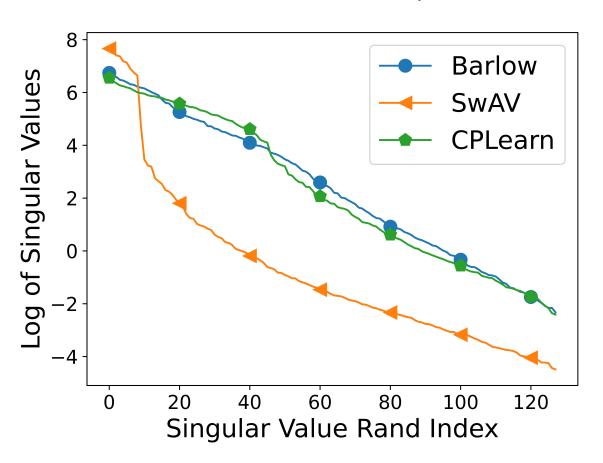




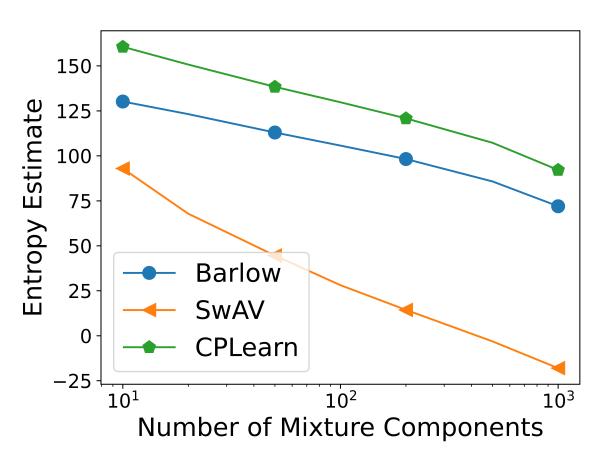




Dimensional Collapse



Intracluster Collapse



Thank You!

