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Background

The objective of binary classification is to categorize each instance
into one of two classes.

e Data: X c R? - Y € {-1,+1}

e Classifier: f(X):R? — R

e Predicted label: Y = sgn(f(X))

e Evaluation via Misclassification error (risk):

R(f) =1 — Acc(f) = E(1(Y f(X) < 0)),

where 1(-) is an indicator function.

Aim. To obtain the Bayes classifier or the best classifier:
f* := argmin R(f)




Background

Due to the discontinuity of the indicator function:

R(f) =1 - Acc(f) = ERL(Y /(X) < 0)),
the zero-one loss is usually replaced by a convex and classification-
calibrated loss ¢ to facilitate the empirical computation (Lin, 2004;
Zhang, 2004; Bartlett et al., 2006):

Ry(f) = E(a(Y £(X)))

For example, the hinge loss for SVM, exponential loss for AdaBoost,
and logistic loss for logistic regression all follow this framework.




Background

Due to the discontinuity of the indicator function:

R(f) =1— Acc(f) = E(1L(Y f(X) < 0)),
the zero-one loss is usually replaced by a convex and classification-
calibrated loss ¢ to facilitate the empirical computation (Lin, 2004;
Zhang, 2004; Bartlett et al., 2006):

Ry(f) = E($(Y £(X)))

For example, the hinge loss for SVM, exponential loss for AdaBoost,
and logistic loss for logistic regression all follow this framework.

(If we optimize with respect to ¢, will the resulting
solution still be the function f* that we need?)

That's why we need the loss ¢ to be calibrated?




Background

Definition 1 (Bartlett et al. (2006)). A loss function ¢(-) is

classification-calibrated, if for every sequence of measurable
function f,, and every probability distributionon X x {+1},

Ry(fn) — il}lf Ry(f) implies that R(f,) — irflf R(f)-

A calibrated loss function ¢ guarantees that any sequence f,, that
optimizes Ry will eventually also optimize R, thereby ensuring
consistency in maximizing classification accuracy.



Background

Definition 1 (Bartlett et al. (2006)). A loss function ¢(-) is

classification-calibrated, if for every sequence of measurable
function f,, and every probability distributionon X x {+1},

Ry(fn) — il}lf Ry(f) implies that R(f,) — irflf R(f)-

A series of studies (Lin, 2004; Zhang, 2004; Bartlett et al., 2006)
culminates in the following theorem for iff conditions of calibration:

Theorem 1 (Bartlett et al. (2006)) Let ¢ be convex. Then ¢ is
classification-calibrated iff it is differentiable at 0 and ¢'(0) < 0.



Classification ERM framework

(i) Select a convex and calibrated (CC) loss function ¢
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Classification ERM framework

(i) Select a convex and calibrated (CC) loss function ¢
(ii) Directly minimizes the ERM of R, to obtain f,,

A

o= argmin Ro(f), Ro(f) = 3 d(wf(x)).
1=1

feF

(SGD is widely adopted for its scalability and generalization when
dealing with large-scale datasets and DL models)
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The ERM paradigm with calibrated losses, when combined with

ML/DL models and optimized using SGD, has achieved tremendous
success in numerous real-world applications.



EnsLoss: Calibrated Loss Ensembles

SGD + Fixed Loss

For each iteration:

e batch sampling from a training set;
* implement SGD on batch samples and a fixed sur-
rogate loss.

SGD + Ensemble Loss (ENSLOSS; our)

For each iteration:

* batch sampling from a training set;
¥+ randomly generate a new|“‘valid” [surrogate loss;
=* implement SGD on batch samples and the generated
surrogate loss.

Inspired by Dropout

(model ensemble over
one training process)
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EnsLoss: Calibrated Loss Ensembles

SGD + Fixed Loss

For each iteration:

e batch sampling from a training set;

* implement SGD on batch samples and a fixed sur-

rogate loss. Inspired by Dropout
SGD + Ensemble Loss (ENSLOSS; our) (model ensemble over
For each iteration: one training prOCGSS)

* batch sampling from a training set;
¥+ randomly generate a new|“‘valid” [surrogate loss;
=* implement SGD on batch samples and the generated
surrogate loss.
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EnsLoss: Calibrated Loss Ensembles

SGD + Ensemble Loss (ENSLOSS; our)

For each iteration:

* batch sampling from a training set;
+ randomly generate a new “valid” surrogate loss;
=*» implement SGD on batch samples and the generated
surrogate loss.

LA A S

Convex ¢ nondecreasing
Calibration |_,| ¢'(0) <0
Bounded Superlinear

\below Yy, Qaising—tail Y,
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EnslLoss

ALGO
Lines 8-11

Lines 12-13

N

Convex ¢ nondecreasing
Calibration |___ | ¢'(0) <0
Bounded Superlinear

\below Y, \Jaising-tail _J

(sorted negative r.v.s. as d9)

rescale loss-derivatives

af

.

Algorithm 1 (Minibatch) Calibrated ensemble SGD.
1: Input: a train set D = (x;,y;)!"_,, a minibatch size B;
2: Initialize 6.
3: for number of epoches do
4: /+ Minibatch sampling »*/
5:  Sample a minibatch from D without replacement:
B= {(xilsyil)a Y (X'isay'is)}-

6: Computez = (zy,--- ,zp)T, where z, = y;, fo(x;,)
forb=1,---,B.
7 /+« Generate random RC loss-derivs x/

/* calibration and convexity «/
9:  Generate g = (g1, -+ ,gp)7, where g ae £,
where £ is a positive random variable (accomplished
through Algorithm 2)
Sort z and g decreasingly, that is

Zx(1) = 2 Zn(B)sy  Yo(1) = " = Go(B):

11:  (the derivative corresponding to zp 18 go(x—1(p)))-
12: /* bounded below =*/
13: Forb=1,---.B,

/ Jo(n—1(b)) € ga(ﬂ—l(b))/zba if zp > 1.

14: /* Update parameters x*/
15:  Compute gradients and update

B
g
0+ 06— 3 Zyibgo’(ﬂ_l(b))vﬂfe(xib)

b=1

16: end for
17: Return the estimated 8
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Experiments

CIFAR
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We construct binary CIFAR
(CIFAR2), by selecting all possible
pairs from CIFAR1O0, resulting:

10x9/2=45
CIFAR2 datasets.

PCam s a binary image
classification dataset comprising
327,680 96x96 images from
histopathologic scans of lymph
node sections
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Experiments

OpenML

20 datasets found [ verified o

Filter by

All

~ Status ~ Instances ~ Features ~ Ta

Regression

(1000 features 0“ (" >1000 instances 0

) | binary class 0

~ Format ~ Tag

Multi-class

Datasets

Datasets provide training data for machine learning models. OpenML datasets are uniformly formatted and come with rich meta-data to allow automated processing. Youcan |5 sort or
Y filter them by a range of different properties. Learn more.

= Bioresponse

Predict a biological response of malecules from their chemical properties. Each row in this data sct represents a molecule. The first column contains experimental data describing an actual bislogical respanse; the
molecule was seen to elicit this response (1), or not (0). The remaining calumns represent molecular descriptor:

{d1 through d1776), these are calculated properties that can capture some of the characteristics of

L 487k 3.75kx 1.78k 4134

= OVA Breast

GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality metrics
(e.g accuracy, precision, area under ROC curve, etc) for classification, feature selection or clustering algorithms

4 287k 1.54k x 10.9k 1128
vl v

= OVA _Ovary

GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algarithms. They can be used for estimation of different quality metrics
(e.g. accuracy, precision, area under ROC curve, etc) for classification, feature selection or clustering algorithms,

4 286k [ 154kx109k [1 1166
vl v

= OVA_Uterus

GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algarithms. They can be used for estimation of different quality metrics
(e.g accuracy, precision, area under ROC curve, etc) for classification, feature selection or clustering algorithms.

A 286k 1.54k x 10.9k 1138
vl v

- .
= OVA _Kidney
GEMLeR provides a collection of gene expression datasets that can be used for benchmarking gene expression oriented machine learning algorithms. They can be used for estimation of different quality metrics
(e.g accuracy, precision, area under ROC curve, etc.) for classification, feature selection or clustering algorithms.
A 285k 9154kx109k [11134

vl

We applied a filering:

n >= 1000
d >= 1000
at least one official run

resulting 14 datasets
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PCam

. MoDELS BCE Exp HINGE ENSLOSS
EnsLoss is a more e
o o CC
desirable option ResNet34  76.91(0.52) 73.78(0.52) 77.20(0.18) 82.33(0.30)
compared to fixed ResNet50 77.23(0.51) 74.10(0.49) 77.96(0.34)  82.00(0.07)

A . VGG16 80.97(0.25) 77.11(0.50) 82.69(0.30) 85.77(0.35)
Iossesmlmage data’ VGG19 81.58(0.25) 76.13(0.35) 82.77(0.41) 85.91(0.19)

and it is a viable AUC)
option worth ResNet34  88.69(0.34) 83.30(0.57) 76.11(0.37) 92.24(0.13)

: : : ResNet50 88.75(0.30) 83.51(0.46) 77.24(0.67) 92.07(0.49)
conSIderlnglntabular VGG16 93.35(0.26) 88.77(0.59) 86.18(0.56) 95.44(0.24)

data. VGG19  93.49(0.17) 87.89(0.46) 84.09(0.60) 95.51(0.14)
CIFAR2 OpenML

(ENSLOSS) (vs BCE) (vs EXP) (vs HINGE) (ENsSLOSS) (vs BCE) (vs ExP) (vs HINGE)
MODELS (better, no diff, worse) with p < 0.05 MODELS (better, no diff, worse) with p < 0.05
ResNet34 (41,4,0)  (45,0,0)  (36,9,0) MLP(1) 9,4,1)  (7,5,2) (5,4, 5)
ResNet50 (42,3,0) (45,0,0) (43, 2,0) MLP(3) (7,7, 0) (8,5, 1) (9, 3, 2)
ResNet101 (39, 6, 0) (45, (), 0) (40, 5, 0) MLP(S) (1 1, 3, 0) (1 1, 2, 1) (13, (), 1)
VGGI16 (36,9,0) (45,0,0) (29, 16, 0)

VGG19 (36,9,0) (45,0,0) (27, 18, 0)

MobileNet (45,0,0) (45,0,0) (44, 1,0)
MobileNetV2  (45,0,0) (45,0,0) (45, 0,0)




Epoch-level performance

model = MobileNetV2 model = ResNet34 model = VGG16
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Compatibility of prevent-overfitting methods |EnsLoss consistently
REG up  BCE Exp HINGE ENSLOSS OUtpel’fOFmS the fixed
NO REG; losses across epochs;
baseline —67.99(0.30) 60.09(0.19) 68.19(0.40) 69.52(1.38) o .
WEIGHTD 5e-5 67.64(0.14) 60.43(0.23) 68.26(0.65) 71.01(1.04) and it is compatible

Se-4  67.59(0.35) 61.57(0.56) 67.57(0.28) 72.04(0.35) .

5e-3  68.0000.31) 62.26(0.45) 68.26(0.35) 70.84(0.67) with other methods,
DROPOUT 0.1  67.50(0.39) 60.70(0.34) 67.89(0.30) 72.48(0.22) and their combination

02  68.13(0.54) 60.02(0.52) 67.78(0.44) 70.08(1.28) |.,: "

03  67.65(0.29) 59.70(0.46) 67.78(0.49) 72.44(0.68) yields additional
DATAAUG —  79.22(0.12) 58.96(0.31) 80.47(026) 83.00(0.25) |lMprovement.




Summqry

The primary motivation of EnsLoss behind consists of two
components: “ensemble” and the “CC” of the loss functions.

This concept can be extensively applied to various ML problems, by
identify the specific conditions for loss consistency or calibration.

Thank youl
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