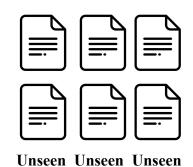


How Contaminated Is Your Benchmark? Measuring Dataset Leakage in LLMs with Kernel Divergence

Hyeong Kyu Choi*, Maxim Khanov*, Hongxin Wei, Yixuan Li †



Unseen Unseen Unseen

Data Contamination

Unseen Unseen Unseen

Unseen Unseen Unseen

Unseen Unseen Unseen

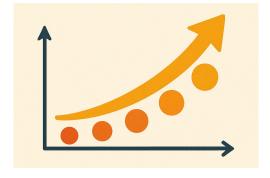
Unseen Seen Seen

$$S:(\mathcal{D},\mathcal{M}) \to \mathbb{R}$$

$$S: (\mathcal{D}, \mathcal{M}) o \mathbb{R}$$

$$S:(\mathcal{D},\mathcal{M}) o \mathbb{R}$$

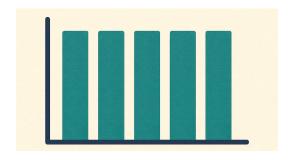
$$S:(\mathcal{D},\mathcal{M}) \to \mathbb{R}$$


What does it take to reliably measure contamination levels?

Requirement 1. (*Monotonicity*) If dataset \mathcal{D} is more independent of model \mathcal{M} than dataset \mathcal{D}' , i.e., $\lambda < \lambda'$, then

$$S(\mathcal{D}, \mathcal{M}) < S(\mathcal{D}', \mathcal{M})$$

should hold with statistical significance. In other words, a dataset with a smaller λ , the fraction of seen data, should have accordingly a smaller contamination score $S(\mathcal{D}, \mathcal{M})$.



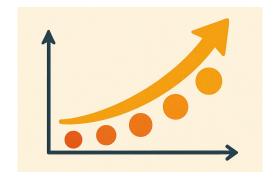
Requirement 1. (*Monotonicity*) If dataset \mathcal{D} is more independent of model \mathcal{M} than dataset \mathcal{D}' , i.e., $\lambda < \lambda'$, then

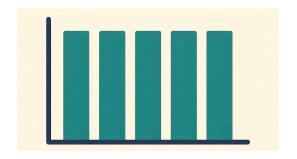
$$S(\mathcal{D}, \mathcal{M}) < S(\mathcal{D}', \mathcal{M})$$

should hold with statistical significance. In other words, a dataset with a smaller λ , the fraction of seen data, should have accordingly a smaller contamination score $S(\mathcal{D}, \mathcal{M})$.

Requirement 2. (Consistency) If datasets \mathcal{D} and \mathcal{D}' both comprise of independently and identically distributed (i.i.d.) samples from a distribution with the same contamination ratio λ ,

$$S(\mathcal{D}, \mathcal{M}) \approx S(\mathcal{D}', \mathcal{M})$$

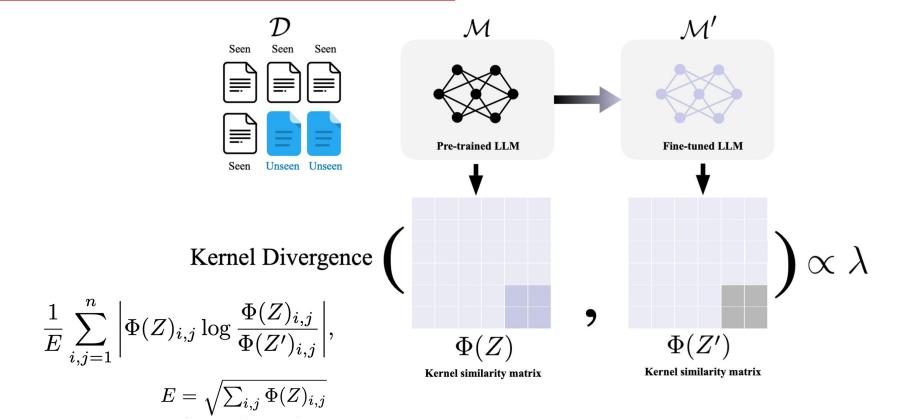

should hold with statistical significance.



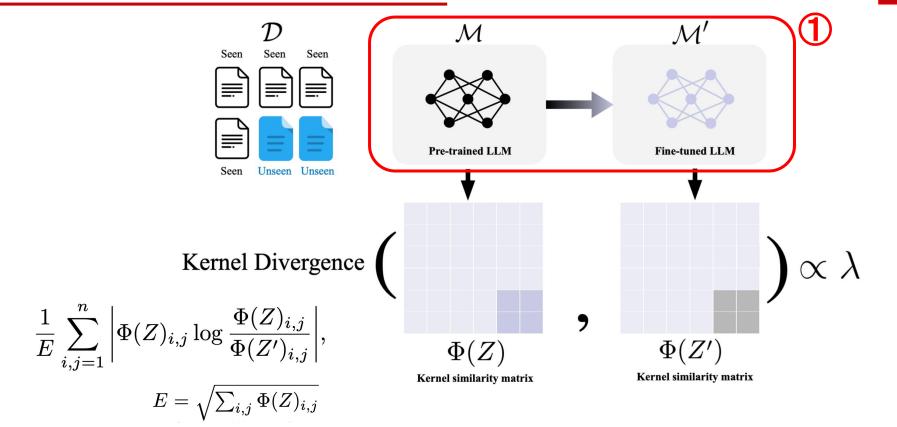
Requirement 1. (*Monotonicity*) If dataset \mathcal{D} is more independent of model \mathcal{M} than dataset \mathcal{D}' , i.e., $\lambda < \lambda'$, then

$$S(\mathcal{D}, \mathcal{M}) < S(\mathcal{D}', \mathcal{M})$$

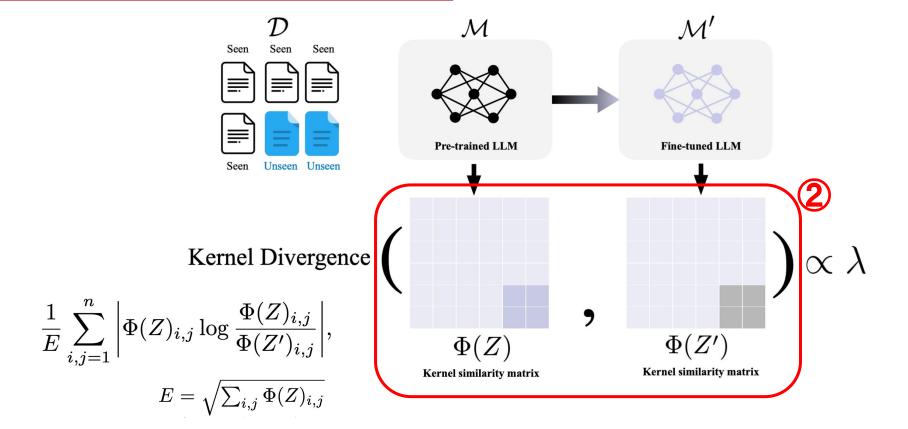
should hold with statistical significance. In other words, a dataset with a smaller λ , the fraction of seen data, should have accordingly a smaller contamination score $S(\mathcal{D}, \mathcal{M})$.

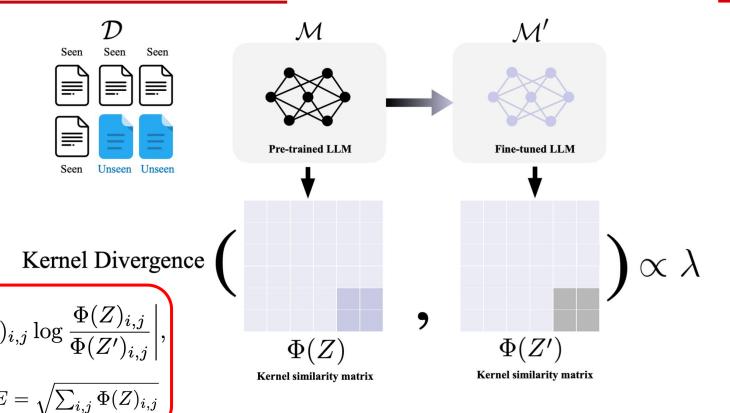

Requirement 2. (Consistency) If datasets \mathcal{D} and \mathcal{D}' both comprise of independently and identically distributed (i.i.d.) samples from a distribution with the same contamination ratio λ ,

$$S(\mathcal{D}, \mathcal{M}) \approx S(\mathcal{D}', \mathcal{M})$$


should hold with statistical significance.

We find that previous MIA approaches aren't reliable scorers





	WikiMIA		BookMIA		ArxivTection		Average	
Methods	Spearman \uparrow	$\textbf{Pearson} \uparrow$	Spearman ↑	Pearson \uparrow	$\big \mathbf{Spearman} \uparrow$	Pearson \uparrow	Spearman \uparrow	Pearson ↑
Non-kernel-based Methods								
Zlib (Carlini et al., 2021)	0.968	0.960	-1.000	-0.997	0.997	0.918	0.322	0.294
Zlib + FSD (Zhang et al., 2025)	0.976	0.966	-0.888	-0.895	0.941	0.947	0.343	0.339
Perplexity (Li, 2023)	0.933	0.929	0.964	0.967	1.000	0.997	0.966	0.964
Perplexity + FSD (Zhang et al., 2025)	0.979	0.967	-0.777	-0.824	0.992	0.982	0.398	0.375
Min-K% (Shi et al., 2023)	0.893	0.899	0.998	0.992	1.000	0.998	0.964	0.964
Min-K% + FSD (Zhang et al., 2025)	0.932	0.937	-0.526	-0.640	0.988	0.980	0.459	0.420
Min-K%++ (Zhang et al., 2024b)	-0.790	-0.833	OOM	OOM	0.996	0.996	0.103	0.082
Min-K%++ + FSD (Zhang et al., 2025)	-0.790	-0.834	OOM	OOM	0.754	0.809	-0.018	-0.013
SRCT (Oren et al., 2024)	0.080	0.073	-	-	-	-	0.080	0.073
Kernel-based Method								
Kernel Divergence Score (Ours)	0.999	0.993	0.997	0.979	0.975	0.974	0.990	0.982

Temporal Shift: *MIA benchmarks may be susceptible to temporal cues, inadvertently simplifying the membership inference task.*

Methods	Wikipedia	PhilPapers	Enron	HackeerNews	Pile_CC	StackExchange	Average
Zlib	0.861	1.000	1.000	-0.956	-0.782	0.990	0.352
Zlib + FSD	1.000	0.991	0.999	0.323	0.894	0.999	0.868
Perplexity	-0.886	0.999	0.999	-0.999	-0.251	0.999	0.144
Perplexity + FSD	1.000	0.990	0.999	0.118	0.908	1.000	0.836
Min-K%	-0.645	0.996	1.000	-0.955	0.690	0.999	0.348
Min-K% + FSD	0.997	0.952	0.997	0.421	0.908	1.000	0.879
Min-K%++	-0.482	0.960	-0.842	0.561	0.514	0.697	0.235
Min-K%++ + FSD	-0.536	0.994	-0.770	0.705	-0.358	0.210	0.041
Kernel Divergence Score (Ours)	0.891	0.982	1.000	0.897	0.895	1.000	0.944

paper link

github link