Do World Models Already Have Built-In Anomaly Detection?

Novelty Detection in Reinforcement Learning with World Models

Geigh Zollicoffer, Kenneth Eaton*, Jonathan C Balloch, Julia Kim, Wei Zhou, Robert Wright*, Mark Riedl Georgia Institute of Technology, Georgia Tech Research Institute*

1. Problem Statement

Reinforcement learning (RL) using world models has found significant recent successes. However, when a sudden change to world mechanics or properties occurs then agent performance and reliability can dramatically decline.

Our technique calculates a novelty threshold bound without additional hyperparameters by considering how much the actual world observation deviates from the distribution of world observations that the agent predicts it will encounter.

2. Latent Based Detection

World Model Architecture:

Representation model: $p_{\phi}(z_t|h_t, x_t)$ Transition prediction model: $p_{\phi}(\hat{z}_t|h_t)$ Image prediction model: $p_{\phi}(\hat{x}_t|h_t, z_t)$ Reward prediction model: $p_{\phi}(\hat{r}_t|h_t, z_t)$ Discount prediction model: $p_{\phi}(\hat{\gamma}_t|h_t, z_t)$

Recurrent model: $h_t = f_{\phi}(h_{t-1}, z_{t-1}, a_{t-1})$

$$\mathcal{L}(\phi) = \underset{p_{\phi}(z|a,x)}{\mathbb{E}} \left[\sum_{t}^{T} - \ln p_{\phi}(x_{t}|h_{t}, z_{t}) - \ln p_{\phi}(r_{t}|h_{t}, z_{t}) + \beta KL \left[p_{\phi}(z_{t}|h_{t}, x_{t}) ||p_{\phi}(z_{t}|h_{t}) \right] \right]$$

1. Measure the cross-entropy score comparison and derive in terms of KL to use world model components:

$$H(p_{\phi}(z_{t}|h_{t},x_{t}),p_{\phi}(z_{t}|h_{0})) - H(p_{\phi}(z_{t}|h_{t},x_{t}),p_{\phi}(z_{t}|h_{0},x_{t})) =$$

$$(KL[p_{\phi}(z_{t}|h_{t},x_{t})||p_{\phi}(z_{t}|h_{0})] + H(p_{\phi}(z_{t}|h_{t},x_{t})))$$

$$-KL[p_{\phi}(z_{t}|h_{t},x_{t})||p_{\phi}(z_{t}|h_{0},x_{t})] - H(p_{\phi}(z_{t}|h_{t},x_{t})) =$$

$$KL[p_{\phi}(z_{t}|h_{t},x_{t})||p_{\phi}(z_{t}|h_{0})]$$

$$-KL[p_{\phi}(z_{t}|h_{t},x_{t})||p_{\phi}(z_{t}|h_{0},x_{t})]$$

2. Derive a bound using the minimization objective of the world model as an anomaly score:

$$KL[p_{\phi}(z_{t}|h_{t},x_{t})||p_{\phi}(z_{t}|h_{t})] \leq KL[p_{\phi}(z_{t}|h_{t},x_{t})||p_{\phi}(z_{t}|h_{0})] - KL[p_{\phi}(z_{t}|h_{t},x_{t})||p_{\phi}(z_{t}|h_{0},x_{t})]$$

MuJoCo

Minigrid

3. Observation based Detection

Derive a bound from difference in pixel values compared to tuned hyperparameter λ :

$$\frac{\sum_{i}^{N} |\hat{x_t}_{\text{prior}}^i - \hat{x_t}_{\text{posterior}}^i|}{N} \le \lambda$$

Note, the prior and posterior images are generated without providing the ground truth, \mathcal{X}_t , as input

4. Experimental Evaluation

<u>Task:</u> Detect a novel transition as soon as the agent experiences it, while minimizing false positives. <u>Techniques:</u> KL Bound (Latent Based), RIQN (Ensemble Based), PP-MARE (Observation Based).

Results: Agents can utilize world models to detect novel transitions at a more effective rate than previous methods.

Method	False Positive Rate								
Atari	Boxing	Kangaroo	Freeway	SeaQuest					
KL Bound	$\leq 10^{-2}$	$\leq 10^{-2}$	$\leq 10^{-2}$	$\leq 10^{-2}$					
PP-Mare	.04	$\leq 10^{-2}$	$\leq 10^{-2}$	$\leq 10^{-2}$					
RIQN	.17	.39	.24	.43					
DMC	Cartpole-B.	Quadruped-R.	Humanoid-S.	Walker-W.					
KL Bound	$\leq 10^{-2}$	$\leq 10^{-2}$	$\leq 10^{-2}$	$\leq 10^{-2}$					
PP-Mare	.01	.01	$\leq 10^{-2}$	$\leq 10^{-2}$					
RIQN	.68	.19	.05	.18					

Method	Average Fa	lse Positive Rate	Inference Run-time Speedup				
	DMC	Atari	DMC	Atari			
RIQN	.275	.308	×1	×1			
PP-Mare	$\leq 10^{-2}$	$\leq 10^{-2}$	$\times 1.16 \cdot 10^2$	$\times 4.45 \cdot 10^{1}$			
KL bound	$\leq 10^{-2}$	$\leq 10^{-2}$	$\times 1.34 \cdot 10^{3}$	$\times 5.12 \cdot 10^2$			

World Model based detection improves the speed and minimizes the average false positive rate.

	$ADE\downarrow$	AUC↑	ADE↓	AUC↑	$ADE \downarrow$	AUC↑		ADE↓	AUC↑	ADE↓	AUC↑	ADE↓	AUC
Boxing	OneArm BodySwitch		vitch			Cartpole-3D-Balance	LowPe	erterb	erb HighPerterb		LowNoise		
							KL Bound	51.9	.799	49.2	.774	24.1	.853
KL Bound	52.6	.708	$\leq 10^{-2}$	≥ .99	$ \leq 10^{-2} $ 5.4	≥ .99	PP-Mare (.7) RIQN (10 ⁻¹ ,10 ⁻¹)	45.4 6.20	.529 .915	43.7 5.75	.522 .890	61.3 3.67	.600 ≥ .9
PP-Mare (2) RIQN (10 ⁻⁵ , 10 ⁻⁷)	22.5 347.5	.505	6.30 509.3	.380	103.1	.862 .401	111(11(10 ,10)	HighN		LowD			Damp
Kangaroo	Floors	wap	Difficu	lty+	DisableM	Ionkey	KL Bound	2.86	≥ .99	20.2	.784	25.0	.770
		•		-			PP-Mare (0.7) RIQN $(10^{-1}, 10^{-1})$	22.7 3.33	.840	110.8 5.33	.395 .543	94.5 1.66	.448
KL Bound	9.9		$\leq 10^{-2}$	≥ .99	.960	≥ .99							
PP-Mare (.5) RIQN (10 ⁻² ,10 ⁻²)	85.2 166.3	.281	42.5 94.2	≥ .99	41.3 93.1	.937 .710	Quadruped-3D-Run	LowPe	erterb	HighPo	erterb	Low	Noise
KIQN (10 ,10)	100.5	.541	94.2	≥ .99	95.1	./10	KL Bound	1.00	.908	1.30	.901	24.8	.839
Freeway	Invisible	eCars	Color	Cars	Frozen	Cars	PP-Mare (1.5) RIQN $(10^{-1}, 10^{-1})$	1.00 13.3	.793 .806	1.26 12.7	.830 .883	17.3 4.70	.645
KL Bound	$\leq 10^{-2}$	≥ .99	$\leq 10^{-2}$	≥ .99	$\leq 10^{-2}$.985	111011(10 ,10)	HighN		LowD			Damp
PP-Mare (.5)	2.33	≥ .99	1.84	\geq .99	2.60	.931	KL Bound	3.82	> .99	89.8	.512	112.9	.507
$RIQN(10^{-7}, 10^{-9})$	2.87	.938	2.62	≥ .99	.502	.980	PP-Mare (1.5)	3.94	.821	49.1	.448	52.86	.415
SeaQuest	DisableE	Enemy	Grav	ity	Unlimited	Oxygen	RIQN (10 ⁻¹ ,10 ⁻¹)	4.02	.980	94.3	.426	103.0	.489
VI Davad	202	062	45.0	040	< 10−2	> 00	Humanoid-3D-Stand	LowPe	rterb	HighPe	erterb	Lowl	Noise
KL Bound PP-Mare (.7)	.202 111.6	.962 .678	45.8 24.1	.949	$\leq 10^{-2}$ 3.73	≥ .99 .938	KL Bound	44.4	.925	$\leq 10^{-2}$		9.05	.755
RIQN $(10^{-2}, 10^{-3})$	45.3	.272	157.3	.390	16.0	.701	PP-Mare (4) RIQN (10 ⁻¹ ,10 ⁻¹)	17.9	.833 .854	15.2 32.3	.849 .983	157.0	.363
ktQt(10 ,10)	45.5	.272	157.5	.570	10.0	.701	KIQN (10 ,10)	64.8				2.16	.919
	ADE↓	AUC↑	ADE↓	AUC1	` ADE↓	AUC↑	KL Bound	$\frac{\text{HighN}}{\leq 10^{-2}}$		LowFri 59.8	.748	HighF 18.75	.845
Door Von Grif	T	· Con	Duoles	Door.	Door	Cono	PP-Mare (4)	258.5	.372	17.3	.853	8.10	.822
DoorKey-6x6	Lava	aGap	Вгоко	enDoor	Door	Gone	$RIQN(10^{-1},10^{-1})$	1.50	.982	53.1	.549	12.7	.480
KL Bound	.110	.732	$ \le 10^{-2}$.939	.120	.940	Walker-3D-Walk	LowPe	erterb	HighPe	erterb	Lowl	Noise
PP-Mare (1)	.170	.765	.017	.784	.080	.685	KL Bound	$\leq 10^{-2}$	≥ .99	$\leq 10^{-2}$	> .99	17.6	.573
RIQN $(10^{-2}, 10^{-2})$	$\leq 10^{-2}$.760	2.56	.920	.066	.600	PP-Mare (7)	18.7	.725	7.16	.798	50.9	.407
	Tele	eport	Actio	onFlip			RIQN $(10^{-1}, 10^{-1})$	8.11	.743	7.80	.715	2.73	.883
VI Doned			1 / 10=2	2 001	_			HighN	loise	LowFri	iction	HighF	riction
KL Bound	$\leq 10^{-2}$.992	$\leq 10^{-2}$.991			KL Bound PP-Mare (7)	1.48 21.1	.911 .546	17.25 2.37	.961 .943	5.93 1.98	≥ .9 .962
PP-Mare (1)								7.1					CHE

Left: Evaluation scores of AUC and Average Delay Error (ADE) on Minigrid and Atari environments

Right: Evaluation scores of AUC and Average Delay Error (ADE) on DeepMind Control environments.

The normalized anomaly score trend of each detection method as the episode progresses in the nominal environment.

