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Method: Optimal Transport for Robust Posterior Estimation (RoPE) in Simulation-based Inference 

First benchmark with labeled real-world dataSimulation-based Inference (SBI) [1] RoPE — A framework for Robust Posterior Estimation 

Optimal Transport (OT) [2] 

Properties of RoPE

Results
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Simulator

SBI enables statistical inference over the parameters 
of complex simulators.

1) Generate a large set of simulations.

2) Neural Posterior Estimation

hs(xs)hψ(xs)
xs pϕ(θ ∣ hψ(xs))

One can generate as many samples 
from  as needed:p(θ, xs)

Training objective: 
ψ⋆, ϕ⋆ = arg min

ψ,ϕ
KL[p(θ, xs) |pϕ(θ, hψ(xs))]

= arg min
ψ,ϕ

𝔼p(θ,xs)[log pϕ(θ ∣ hψ(xs))]

Free-form 
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Normalizing 
Flow

One can make  arbitrarily close to a minimal sufficient statistics of .hψ(xs) θ

θ xs xo

OT provides a flexible way to model the gap between 
simulated and real-world observations.

Simulator OT

The solution obtained depends strongly on the cost function chosen! 
We propose to define it on statistics of  rather than raw observations.θ
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• RoPE enables reliable few-shot uncertainty quantification under model misspecification, 
leveraging a small set of real data to calibrate simulation-based inference. 

• Optimal Transport (OT) provides a flexible, assumption-light mechanism to model 
misspecification, enabling control over calibration vs informativeness and robustness to 
prior shifts. 

• We keep Neural Posterior Estimation (NPE) unchanged — preserving amortization and 
scalability — and layer on top a lightweight OT-based correction. 

• No free lunch: any correction model creates a new posterior — RoPE makes this explicit 
and allows practitioners to tune the tradeoff with interpretable hyperparameters (  and ). 

• Minimal assumptions, maximal reuse: RoPE treats simulators as imperfect but valuable 
priors, correcting only what’s needed without discarding domain expertise.
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1. Self-calibration via entropy regularisation 

2. Control Mechanism for the posteriors’ confidence 

3. Robustness to prior misspecification

 
γ → ∞, p̃(θ ∣ xo) ≈
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p̃(θ ∣ xj
s) ≈ p(θ)

 Ep(xo)[p̃(θ ∣ xo)] = p(θ)
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B Robustness to prior misspecification
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C OT balance parameter
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Modeling assumption: xo ⊥ θ ∣ xs
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Few-shot learning

θ1

θ2

RoPE (0-shot)

OTCalibration set {xi
o, θi}nc

i=1

p(θ ∣ xo) := ∫ p(θ ∣ xs)p(xs ∣ xo)dxs

RoPE (50-shot)

Calibration set finetuning loss:  

ℒ(φ; 𝒞) =
nc

∑
i=1

gφ(xi
o) − 𝔼ε∼𝒰[0,1] [hω⋆(S(θi, ε))]
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Motivation
Uncertainty quantification under scarce data 

Scientific simulators as a source of data 

Inverse Problem — Estimate p(θ ∣ xs)

Parameters of 
interest

ψ1 ∼ p(ψ1) ψ2 ∼ p(ψ2) ψ3 ∼ p(ψ3)

Heart Function PDE Solver Measurement 
Device

HR 93bpm

SV 55mL

xs

Simulated 
observation

One can train a neural posterior estimator on simulated data!

Model Misspecification in Simulation-based Inference [3] 

SBI methods are very sensitive to model misspecification. [3]

θxo
Cardiovascular parameters, 
e.g., stroke volume, ejection 

Difficult to obtain

Measurements, e.g., 
PPG, APW

Readily available

Inference

̂p(θ ∣ xo)

Solution is often non-deterministic

xs hs(xs)

Neural Statistical 
Estimator

Conditional Density 
Estimator

Training

xo

Test Test

On simulations, 
after training,  

NPE works 
great!

NPE is very 
sensitive to 
distribution 

shifts…

Scientific Simulator

Our idea: Jointly leverage the simulator, unlabelled data, and, if accessible, small amounts 
of labeled data to model misspecification with optimal transport.
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Abstract

• Simulation-based inference (SBI) provides a powerful framework to estimate parameters 
and quantify uncertainty from black-box stochastic simulators. [1] 

• While SBI has enabled breakthroughs across science and engineering, its real-world 
impact is limited by a key weakness: sensitivity to model misspecification. [3] 

Question: How can we make SBI algorithms more robust to misspecification?
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Small amount of labelled 
data

{(x j
o)}

no
j=1

{(θ j, x j
o)}

nC
j=1

θ

Setting considered: 

xi
o

c(xi
o, x j

s)
x j

s

xo
xs

xo
xs

xo
xs

We use entropy-regularised semi-balanced OT, 
solved with a variant of the Sinkhorn algorithm in  O(nons)

 P⋆ = arg min
P∈ℬo

⟨P, C⟩ + ρ KL (P⊤1no

1
ns

1ns) + γ⟨P, log P⟩,

For arbitrary cost functions, solving a 
discrete OT problem costs O(n3

o)
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