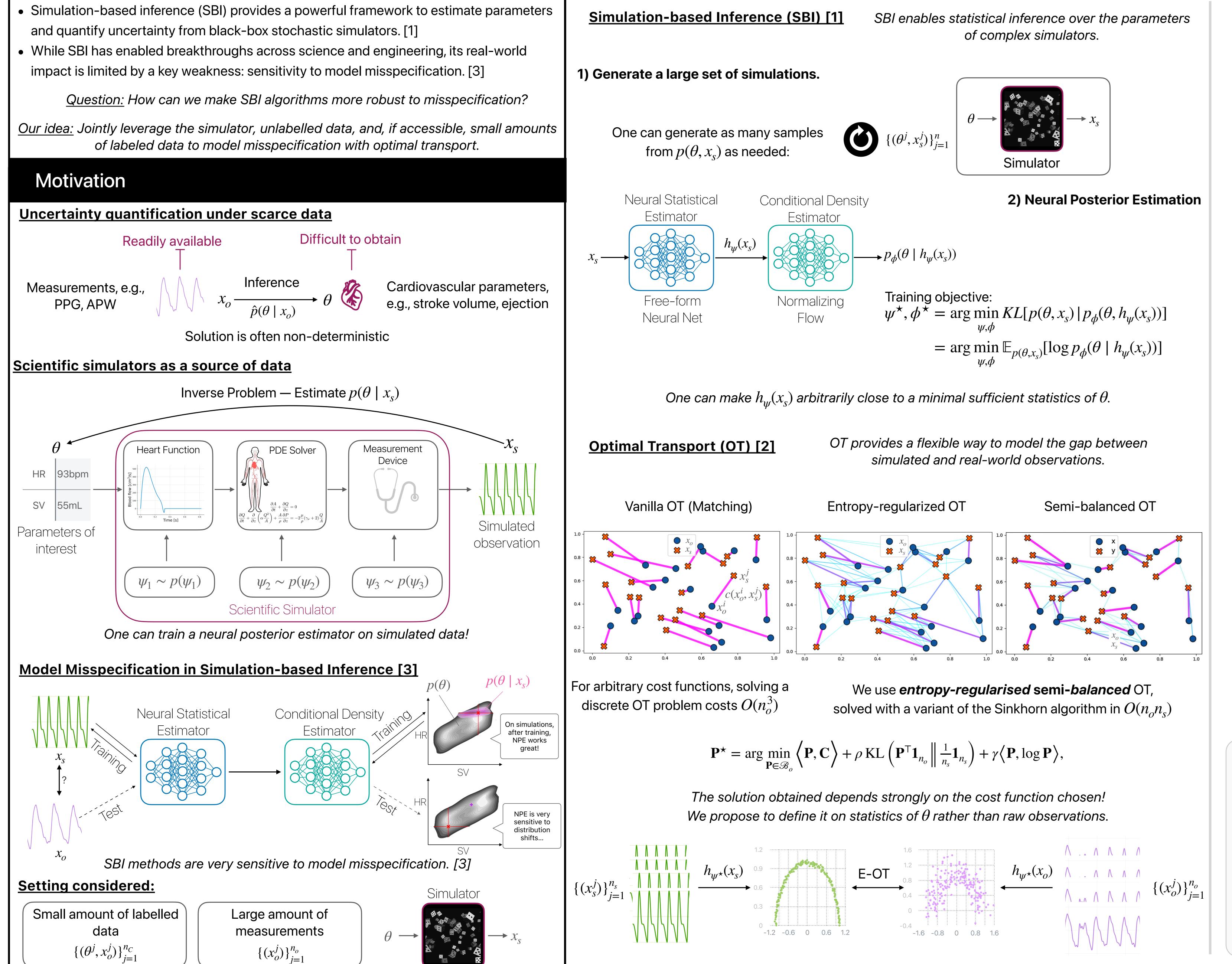


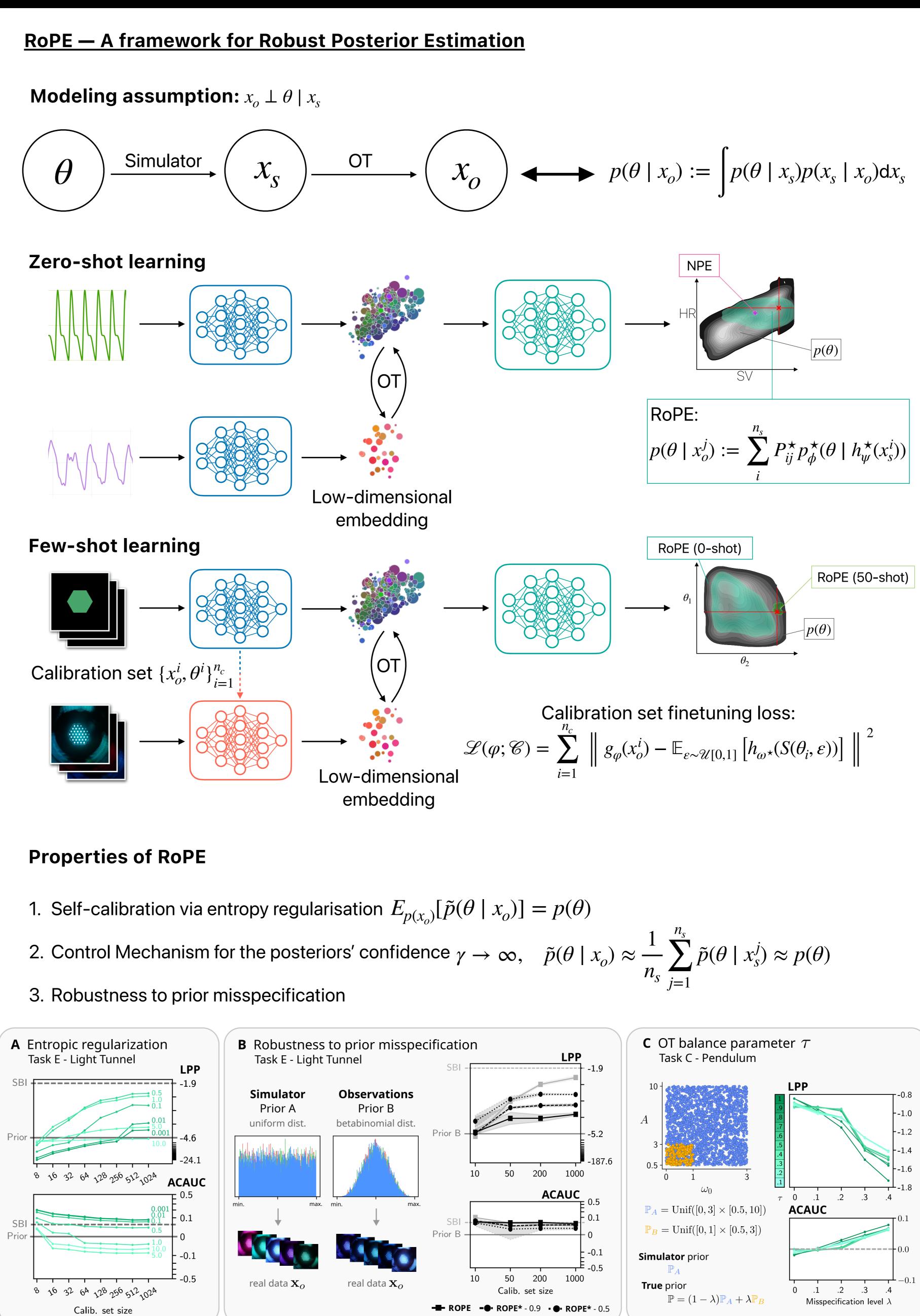
Abstract

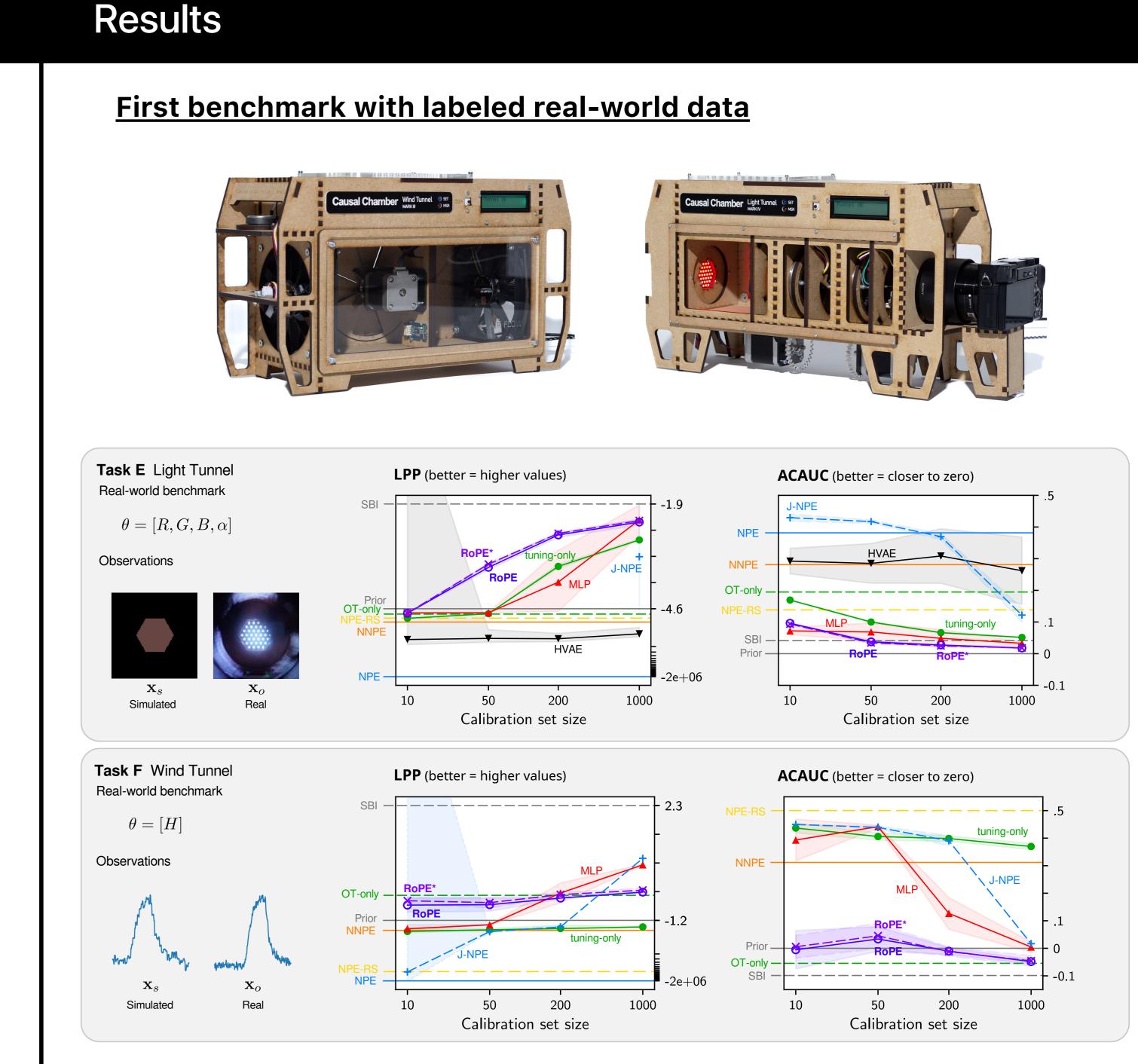
Addressing Misspecification in Simulation-based Inference through Data-driven Calibration

Method: Optimal Transport for Robust Posterior Estimation (RoPE) in Simulation-based Inference

A. Wehenkel¹, J. L. Gamella^{2*}, O. Sener¹, J. Behrmann¹, G. Sapiro¹, J. Jacobsen^{*}, M. Cuturi¹ ICML 2025 · ¹: Apple — ²: ETH Zürich — *: work done while being at Apple







Take-home Messages

- RoPE enables reliable few-shot uncertainty quantification under model misspecification, leveraging a small set of real data to calibrate simulation-based inference.
- Optimal Transport (OT) provides a flexible, assumption-light mechanism to model misspecification, enabling control over calibration vs informativeness and robustness to prior shifts.
- We keep Neural Posterior Estimation (NPE) unchanged preserving amortization and scalability — and layer on top a lightweight OT-based correction.
- No free lunch: any correction model creates a new posterior RoPE makes this explicit and allows practitioners to tune the tradeoff with interpretable hyperparameters (γ and τ).
- Minimal assumptions, maximal reuse: RoPE treats simulators as imperfect but valuable priors, correcting only what's needed without discarding domain expertise.

Sources

[1]: Cranmer, Kyle, Johann Brehmer, and Gilles Louppe. "The frontier of simulation-based inference." Proceedings of the National Academy of Sciences 117.48 (2020): 30055-30062.

[2]: Peyré, Gabriel, and Marco Cuturi. "Computational optimal transport: With applications to data science." Foundations and Trends® in Machine Learning 11.5-6 (2019): 355-607.

[3]:Cannon, Patrick, Daniel Ward, and Sebastian M. Schmon. "Investigating the impact of model misspecification in neural simulation-based inference." *arXiv preprint arXiv:2209.01845* (2022).