

Modulated Diffusion: Accelerating Generative Modeling with Modulated Quantization

Weizhi Gao¹, Zhichao Hou¹, Junqi Yin², Feiyi Wang², Linyu Peng³, Xiaorui Liu¹ ¹North Carolina State University, ²Oak Ridge National Lab, ³Keio University

Problem and Challenges

Diffusion Models. Diffusion models consist of a forward process and a backward process, operating over T steps -- Expensive.

Forward Process: adding noise for training

Reverse Process: predicting noise for generation

Post-Training Quantization. Quantization reduces the inference cost of models by utilizing low-precision integers. Post-Training Quantization (PTQ) post process models -- Activation Bottleneck.

Quantize: converting floating numbers to integers

$$\mathbf{x}_{int} = clamp(\left|\frac{\mathbf{x}}{s}\right| + \mathbf{z}; 0, 2^b - 1)$$

Dequantize: converting integers to floating numbers

$$Q(\mathbf{x}) = s(\mathbf{x}_{int} - \mathbf{z})$$

[1]

- The range of activations is dynamic in time step and instance.
- · The activations is long-tailed.

The mismatch between the weights and activations limits the acceleration of quantization on hardware (for instance, W4A8)

[1] Li, Xiuyu, et al. "Q-diffusion: Quantizing diffusion models." ICCV 2023.

Preliminary Studies and Motivation

Redundancy across Time Steps. The temporal differences $(a_t^{(l)} - a_{t-1}^{(l)})$ of activations present concentrated and unified distribution compared to the raw activation $(a_t^{(l)})$ at layer l in time step t.

Motivation. Make use of the redundancy among time steps for better quantization acceleration – towards aligned and low bits.

Method: Modulated Quantization

Modulated Quantization. We reformulate the linear operators, such as linear layers and convolutional layers, then we propose a unified framework, MoDiff, that inheriting the advantages of quantization and caching methods, compatible to different solvers.

Reformulation:

$$\begin{aligned} \mathbf{o}_{T}^{(l)} &= \mathcal{A}^{(l)}(\mathbf{a}_{T}^{(l)}) \\ \mathbf{o}_{T-1}^{(l)} &= \mathcal{A}^{(l)}(\mathbf{a}_{T-1}^{(l)}) = \mathcal{A}^{(l)}(\mathbf{a}_{T-1}^{(l)} - \mathbf{a}_{T}^{(l)}) + \mathbf{o}_{T}^{(l)} \\ & \cdots \\ \mathbf{o}_{t}^{(l)} &= \mathcal{A}^{(l)}(\mathbf{a}_{t}^{(l)}) &= \mathcal{A}^{(l)}(\mathbf{a}_{t}^{(l)} - \mathbf{a}_{t+1}^{(l)}) + \mathbf{o}_{t+1}^{(l)} \\ & \cdots \\ \mathbf{o}_{1}^{(l)} &= \mathcal{A}^{(l)}(\mathbf{a}_{1}^{(l)}) &= \mathcal{A}^{(l)}(\mathbf{a}_{1}^{(l)} - \mathbf{a}_{2}^{(l)}) + \mathbf{o}_{2}^{(l)} \end{aligned}$$

Since we make use of the linearity of A

$$\begin{aligned} \mathcal{A}^{(l)}(\mathbf{a}_{t}^{(l)}) &= \mathcal{A}^{(l)}(\mathbf{a}_{t}^{(l)}) - \mathcal{A}^{(l)}(\mathbf{a}_{t+1}^{(l)}) + \mathcal{A}^{(l)}(\mathbf{a}_{t+1}^{(l)}) \\ &= \mathcal{A}^{(l)}(\mathbf{a}_{t}^{(l)} - \mathbf{a}_{t+1}^{(l)}) + \mathbf{o}_{t+1}^{(l)}. \end{aligned}$$

Quantization.

$$\hat{\mathbf{o}}_{T} = \mathcal{A}\Big(Q(\mathbf{a}_{T})\Big) \approx \mathcal{A}(\mathbf{a}_{T})$$
 $\hat{\mathbf{o}}_{T-1} = \mathcal{A}\Big(Q(\mathbf{a}_{T-1} - \mathbf{a}_{T})\Big) + \hat{\mathbf{o}}_{T} \approx \mathcal{A}(\mathbf{a}_{T-1})$
...
 $\hat{\mathbf{o}}_{t} = \mathcal{A}\Big(Q(\mathbf{a}_{t} - \mathbf{a}_{t+1})\Big) + \hat{\mathbf{o}}_{t+1} \approx \mathcal{A}(\mathbf{a}_{t})$
...
 $\hat{\mathbf{o}}_{1} = \mathcal{A}\Big(Q(\mathbf{a}_{1} - \mathbf{a}_{2})\Big) + \hat{\mathbf{o}}_{2} \approx \mathcal{A}(\mathbf{a}_{1})$

Method: Error-Compensated Modulation

Error-Compensated Modulation. Trace quantization error to reduce the error accumulation in modulated quantization.

$$\begin{split} \hat{\mathbf{a}}_T &= Q(\mathbf{a}_T) \\ \hat{\mathbf{o}}_T &= \mathcal{A}(\hat{\mathbf{a}}_T) \\ \hat{\mathbf{a}}_{T-1} &= Q(\mathbf{a}_{T-1} - \hat{\mathbf{a}}_T) + \hat{\mathbf{a}}_T \\ \hat{\mathbf{o}}_{T-1} &= \mathcal{A}(\hat{\mathbf{a}}_{T-1}) = \mathcal{A}\Big(Q(\mathbf{a}_{T-1} - \hat{\mathbf{a}}_T)\Big) + \hat{\mathbf{o}}_T \\ & \cdots \\ \hat{\mathbf{a}}_t &= Q(\mathbf{a}_t - \hat{\mathbf{a}}_{t+1}) + \hat{\mathbf{a}}_{t+1} \\ \hat{\mathbf{o}}_t &= \mathcal{A}(\hat{\mathbf{a}}_t) = \mathcal{A}\Big(Q(\mathbf{a}_t - \hat{\mathbf{a}}_{t+1})\Big) + \hat{\mathbf{o}}_{t+1} \\ & \cdots \\ \hat{\mathbf{a}}_1 &= Q(\mathbf{a}_1 - \hat{\mathbf{a}}_2) + \hat{\mathbf{a}}_2 \\ \hat{\mathbf{o}}_1 &= \mathcal{A}(\hat{\mathbf{a}}_1) = \mathcal{A}\Big(Q(\mathbf{a}_1 - \hat{\mathbf{a}}_2)\Big) + \hat{\mathbf{o}}_2 \end{split}$$

Implicitly trace quantization error of modulated quantization.

$$\mathbf{e}_t = (\mathbf{a}_t - \hat{\mathbf{a}}_{t+1}) - Q(\mathbf{a}_t - \hat{\mathbf{a}}_{t+1})$$

= $(\mathbf{a}_t - \hat{\mathbf{a}}_{t+1}) - (\hat{\mathbf{a}}_t - \hat{\mathbf{a}}_{t+1}) = \mathbf{a}_t - \hat{\mathbf{a}}_t$

- Theory 1: modulated quantization introduces smaller quantization error by reducing the magnitude of inputs.
- Theory 2: error compensation reduce the accumulated quantization error in an exponential ratio.
- Caching methods are the special cases with 0 bits.
- Our work is **orthogonal** to existing PTQ methods.

Experimental Results and Visualization

LDM-4 on LSUN-Church

Methods	Bits (W/A)	GBops	FID↓	sFID \downarrow
Full Prec. (Act)	8/32	5015	4.03	10.89
Q-Diff Q-Diff+MoDiff (Ours) LCQ LCQ+MoDiff (Ours)	8/8	1254	4.24 3.85 4.02 3.99	10.57 10.82 11.53 10.06
Q-Diff Q-Diff+MoDiff (Ours) LCQ LCQ+MoDiff (Ours)	8/6	1254	55.13 5.43 4.50 3.89	30.98 13.41 12.90 10.12
Q-Diff Q-Diff+MoDiff (Ours) LCQ LCQ+MoDiff (Ours)	8/4	1254	355.85 3.97 198.37 34.02	187.56 11.16 161.03 10.59
Q-Diff Q-Diff+MoDiff (Ours) LCQ LCQ+MoDiff (Ours)	8/3	1254	367.51 5.40 341.62 12.05	354.59 13.81 407.68 35.29

Visualization of LSUN-Church (W4A4) and MS-COCO (W8A6)

Dynamic Quantization

Pynamic Quantization +MoDiff (ours)

Thanks for your attention!