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The signature

The signature transform of a path X = {X;, t € [0, T|} is an embedding

C([0, T;RY) = T(R)) =RaR &R g ...,

mapping

worseun (1 [ o [ [ axoo..

0<t<T 0<t;1<tr<T

where integration is defined in the geometric rough sense.
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The expected signature
When X is a stochastic process the signature induces the map

P € P(C([0, TERY)) = é(T) := E[S(X), 7] € T((R)).

The expected signature is characteristic for the law of X
Under suitable conditions, ¢ is injective. [Chevyrev and Lyons, 2016] J

This property has been leveraged to develop many ML algorithms.

H 17 @7 b ’
time, t
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Estimating the expected signature

In practice:
@ observe the path over partition 7, i.e. the linear interpolation X7,

@ observe finitely many samples Xt . XN,

¢(T) = E[S(X)p, 7] ¢N(T) = m > SE" ™),

time, ¢ partition, m
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Estimating the expected signature

Observational scheme

I Xl R X’\
—— Xl —e— XNv
(X, t >0}
0 T NT
time,
m T

Figure 1: {X;, t > 0} over M(N) :=m U---U((N—=1)T +7n) C [0, NT].
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Estimating the expected signature

Fixing k € N (signature level) decompose

HM(T) = 0u(T) =

N

1 n,m,

stk(x ™)0,7] — E[S* (X)po, 7] =

n=1
1 Y 1N
k n,mn k n k n K
N;S (X" )po, 1 = S (X")po, 1y + Nzls (X")o.1 — EIS* (X)o7 -
- (in-fill) n=

(long-span)

k(T L ok
SHX ), 1S (X0, 1), 70 a (dependent) CLT as N — oo
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In-fill asymptotics

Assumption (Continuity of X)
For 0 <s < t< T assume
(Aa) [[Xselle S 1t = s

(AG) |[Es[Xs,ellle < It — s|°.

Theorem (in-fill)

Let k e N, m > 2 and p = mk. Assume X satisfies either
@ (Aa) fora>1/2, or
® (Aa), (AS) fora=1/2,6>1,

and 7 is refining with |7t| | 0 “fast” then

Sk(X“)[OJ] 5 Sk(X)[OJ], |7| } 0, with explicit rate.

Examples: 1t6 processes/diffusions, GPs, fBm with 7 dyadic.
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Long-span asymptotics

{X;, t >0} {N(N), N > 1}
X! {X", n>1} Tn
@ or @ with | stationary & - IN(N)| — 0
(2) m> 2 ergodic refining “fast”
(b) strong mixing [N(N)| — 0 “faster”

Theorem (long-span)

o (3) = MNM(T)54(T), N = oo

o (a) + (b) = VN ($™(T) = ¢u(T)) 5 N(0,Z0), N = o0

Examples: 1t6 diffusions, GPs with IM(N) expanding dyadic.
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Variance Reduction via Martingale Correction

When X is a (semi)martingale, the signature is

). 7] = / SFH(X)j0.q ® 0 dXe. (Strat.)

Given N i.i.d. observations of a martingale X, the estimator

PRe(T) = NZ(S (X")jo,7—cSE(X )[0,T]>a

where  SE(X)po,7) = / SKHX) 0, ® dXe, (1t6)
0
improves q{A)Q’(T) since for any entry [ of the k-th level signature

E[¢) (T =E[B)(T)], Var()""(T)) = (1 — p})Var($}'(T)),
where p; := Corr(5'(X)[0, 77, SL(X) [0, 7)-

In practice: observe over 7 and estimate ¢ from X7 ... X J
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Path-dependent Option Pricing [Lyons et al., 2021]

For a large class of path-dependent payoffs F = F(X) = (f, S(X//)[o,rl).
Under pricing measure Q and deterministic discounting Z7,

price(F) = EQ[Z7F] = (f, ZrE[S(Xu)po,]) = (F, Zro(T)).
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= |
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Figure 2: Distributions of ¢"(M):¢"(T) where Q defines a Heston process.
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GP augmented ES classifier [Triggiano and Romito, 2024]

Time series classification model

Input X™ X7~ N (pg(X™), (X))

. T 0 . T
partition, 7 partition, 7 U o

Compute o

Output

AHETY

softmax(by + U}.b)

trained via gradient descent with categorical cross-entropy loss.

Predictive Accuracy [%]

FBM ou Bidim
GPES 95.62 (0.18) 62.20 (0.70) 79.33 (0.46)
GPES-MC 95.26 (0.70) 88.26 (0.31) 88.97 (0.44)
t-stat 1.49 ~101.92 —45.52
p-value 0.15 0.00 0.00
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Signature of Expected Signature [Lemercier et al., 2021]
¥ continuous f : P(C([0, T];RY)) — R, 38 € T((RY))* s.t.

characteristic universality S
y

f) =~ F(T) = (BS5(®)pm-
Model-free distributional regression:

yVi = (ﬂ, 5(&)C(X}’ﬂ—l, R ,XI{V’FN))[QTD + €;.

Predictive MSE [x1073]

Ideal Gas Rough Volatility
small r large r N =20 N =50 N = 100
SES 12.7 (2.3) 0.9 (0.3) | 1.49 (0.39) 0.33(0.13) 0.20 (0.08)
SES-MC 13.1 (4.5) 0.7 (0.2) | 1.26 (0.48) 0.31 (0.09) 0.19 (0.05)
t-stat —0.29 1.41 0.87 0.63 0.29
p-value 0.79 0.23 0.43 0.56 0.79
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